مطالعه اثر روش تهیه کاتالیست در کاهش بنزن موجود در پلاتفرمیت پالایشگاهی با استفاده از هیدروژناسیون رقابتی

نوع مقاله : ترویجی

نویسندگان

1 دانشگاه شهید بهشتی

2 هیئت علمی/دانشکده شیمی دانشگاه شهید بهشتی

3 شرکت ملی پالایش و پخش فرآورده‌های نفتی ایران

چکیده

کاتالیستهای نیکل با روشهای مختلفی تهیه و برای هیدروژناسیون بنزن موجود در پلاتفرمیت پالایشگاهی مورد استفاده قرار گرفت. ارزیابی کاتالیستها در راکتور پیوسته بستر ثابت در فشار اتمسفر و محدوده دمایی K 473-423 صورت گرفت. شناسایی خصوصیات فیزیکوشیمیایی کاتالیستها توسط روشهای XRD، XRF، FESEM،EDS-map، جذب شیمیایی H2 و جذب-واجذب نیتروژن انجام شد. اثر نسبت مولی هیدروژن به بنزن و سرعت فضایی در فعالیت کاتالیست‌ها مطالعه گردید درصد پراکندگی ذرات نیکل به روش تهیه، میزان نیکل نشانده شده و برهم‌کنش بین پایه و نیکل وابسته است. کاتالیستهای تهیه شده با روش ترسیب- رسوب‌گیری و سل-ژل، بنزن موجود در پلاتفرمیت را 6-4 برابر بیشتر از تولوئن هیدروژنه می‌کنند. بالاترین تبدیل بنزن در دمای K 448 توسط کاتالیست تهیه شده با روش ترسیب-رسوب‌گیری بدست آمد. این کاتالیست به دلیل پراکندگی بیشتر و همگن ذرات نیکل عملکرد بهتری در هیدروژناسیون بنزن دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the Effect of Catalyst Preparation Method on Benzene Reduction in the Refinery Platformate Using Competitive Hydrogenation

نویسندگان [English]

  • Taghi Rostamikia 1
  • Mohammad Hassan Peyrovi 2
  • Hoda Farajollahi 3
1 Shahid Beheshti University
2 professor of Shahid Beheshti university/ chemistry department
3 National Iranian Oil Refinery and Distribution Company
چکیده [English]

Nickel catalysts were prepared with different methods and used for hydrogenation of benzene in the refinery platformate. The catalysts were evaluated in a continuous fixed-bed reactor at atmospheric pressure and temperature range of 473-423 K. The physicochemical properties of catalysts were identified by XRD, XRF, FESEM, EDS-map, H2 adsorption and nitrogen adsorption/desorption methods. The effect of hydrogen to benzene ratio and space velocity on catalysts activity were studied. The percentage of nickel particles dispersion is dependent to the method of preparation, the amount of loaded nickel and the interaction between the support and nickel. The catalysts produced by the sedimentation and sol-gel method, 4-6 times more than toluene hydrogenated benzene in the platformate. The highest benzene conversion at 448 K temperature was obtained by catalyst prepared by sedimentation. This catalyst has a better performance in the hydrogenation of benzene due to the greater dispersion and homogeneity of nickel particles.

کلیدواژه‌ها [English]

  • Competitive Hydrogenation
  • Platformate
  • Particles Size and Distribution
  • Benzene Reduction
  • Active Sites
 
1.   EC, Regulation No 2232/96 of the European Parliament and of the Council of 28 October 1996, Official Journal of the European Communities, Vol. 50, 1996, pp 1-4.
2.   De Leeuw F. A., A Set of Emission Indicators for Long-Range Transboundary Air Pollution, Environmental Science & Policy, Vol. 5, 2002, pp 135-145.
3.   Palmer R., Engineers M., Constructors L., Shipman R., Kao S. H., Options for Reducing Benzene in the Refinery Gasoline Pool, 2008, pp 2.
4.   Lewandowska A., Monteverdi S., Bettahar M., Ziolek M., MCM-41 Mesoporous Molecular Sieves Supported Nickel-Physico-Chemical Properties and Catalytic Activity in Hydrogenation of Benzene, Journal of Molecular Catalysis A: Chemical, Vol. 188, 2002, pp 85-95.
5.   Wojcieszak R., Monteverdi S., Mercy M., Nowak I., Ziolek M., Bettahar M., Nickel Containing MCM-41 and AlMCM-41 Mesoporous Molecular Sieves: Characteristics and Activity in the Hydrogenation of Benzene, Applied Catalysis A: General, Vol. 268, 2004, pp 241-253.
6.   Gonçalves G., Lenzi M., Santos O., Jorge L., Preparation and Characterization of Nickel Based Catalysts on Silica, Alumina and Titania Obtained by Sol-Gel Method, Journal of Non-Crystalline Solids, Vol. 352, 2006, pp 3697-3704.
7.   Zhou S., Varughese B., Eichhorn B., Jackson G., McIlwrath K., Pt-Cu Core-Shell and Alloy Nanoparticles for Heterogeneous NOx Reduction: Anomalous Stability and Reactivity of a Core-Shell Nanostructure, Angewandte Chemie International Edition, Vol. 44, 2005, pp 4539-4543.
8.   Escobar J., De Los Reyes J. D., Viveros T., Nickel on TiO2 Modified Al2O3 Sol-Gel Oxides: Effect of Synthesis Parameters on the Supported Phase Properties, Applied Catalysis A: General, Vol. 253, 2003, pp 151-163.
9.   Bakar N. A., Bettahar M. M., Bakar M. A., Monteverdi S., Ismail J., Alnot M., Silica Supported Pt/Ni Alloys Prepared Via Co-Precipitation Method, Journal of Molecular Catalysis A: Chemical, Vol. 308, 2009, pp 87-95.
10. Huang Z., Cui F., Kang H., Chen J., Zhang X., Xia C., Highly Dispersed Silica-Supported Copper Nanoparticles Prepared by Precipitation-Gel Method: A Simple but Efficient and Stable Catalyst for Glycerol Hydrogenolysis, Chemistry of Materials, Vol. 20, 2008, pp 5090-5099.
11. Li Y., Lai G. H., Zhou R. X., Carbon Nanotubes Supported Pt-Ni Catalysts and Their Properties for the Liquid Phase Hydrogenation of Cinnamaldehyde to Hydrocinnamaldehyde, Applied Surface Science, Vol. 253, 2007, pp 4978-4984.
12. Boudjahem A. G., Pietrowski M., Monteverdi S., Mercy M., Bettahar M. M., Structural and Surface Properties of Ni-Cu Nanoparticles Supported on SiO2, Journal of Materials Science, Vol. 41, 2006, pp 2025-2030.
13. Telkar M., Nadgeri J., Rode C., Chaudhari R., Role of A Co-Metal in Bimetallic Ni–Pt Catalyst for Hydrogenation of m-Dinitrobenzene to m-Phenylenediamine, Applied Catalysis A: General, Vol. 25, 2005, pp 23-30.
14. Peyrovi M. H., Parsafard N., Hajiabadi M. A., Ni‐W Catalysts Supported on HZSM‐5/HMS for the Hydrogenation Reaction of Aromatic Compounds: Effect of Ni/W Ratio on Activity, Stability, and Kinetics, International Journal of Chemical Kinetics, Vol. 49, 2017, pp 283-292.
15. Zhu L., Sun H., Fu H., Zheng J., Zhang N., Li Y., Chen B. H., Effect of Ruthenium Nickel Bimetallic Composition on the Catalytic Performance for Benzene Hydrogenation to Cyclohexane, Applied Catalysis A: General, Vol. 499, 2015, pp 124-132.
16. Peyrovi M. H., Parsafard N., Mohammadian Z., Benzene Selective Hydrogenation Over Supported Ni (Nano-) Particles Catalysts: Catalytic and Kinetics Studies, Chinese Journal of Chemical Engineering, Vol. 26, 2018, pp 521-528.
17. Goundani K., Papadopoulou C., Kordulis C., Benzene Elimination from Reformate Gasoline by High Pressure Hydrogenation in A Fixed-Bed Reactor, Reaction Kinetics, Mechanisms, and Catalysis, Vol. 82, 2004, pp 149-155.
18. Peyrovi M. H., Rostamikia T., Parsafard N., Competitive Hydrogenation of Benzene in reformate gasoline over Ni supported on SiO2, SiO2-Al2O3 and Al2O3 Catalysts: Influence of Support Nature, Energy & Fuels, Vol. 32, 2018, pp 11432-11439.
19. Wu C., Wang L., Williams P. T., Shi J., Huang J., Hydrogen Production from Biomass Gasification with Ni/MCM-41 Catalysts: Influence of Ni Content, Applied Catalysis B: Environmental, Vol. 108, 2011, pp 6-13.
20. Delmon B., Ertl G., Knözinger H., Weitkamp J., Handbook of Heterogeneous Catalysis. Ertl, Knözinger, Weitkamp (Eds), VCH, Weinheim, 1997, pp 1387.
21. Peyrovi M. H., Toosi M. R., Study of Benzene Hydrogenation Catalyzed by Nickel Supported on Alumina in A Fixed Bed Reactor, Reaction Kinetics, Mechanisms, and Catalysis, Vol. 94, 2008, pp 115-119.
22. Zhang H., Zhang X. G., Wei J., Wang C., Chen S., Sun H. L., Wang Y. H., Chen B. H., Yang Z. L., Wu D. Y., Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy, Journal of the American Chemical Society, Vol. 139, 2017, pp 10339-10346.
23. Prins R., Hydrogen Spillover: Facts and Fiction, Chemical Reviews, Vol. 112, 2012, pp 2714-2738.
24. Ali A. G. A., Ali L. I., Aboul-Fotouh S., Aboul-Gheit A. K., Hydrogenation of Aromatics on Modified Platinum-Alumina Catalysts, Applied Catalysis A: General, Vol. 170, 1998, pp 285-296.
25. Ghosh P., J. Hickey K. J., Jaffe S. B., Development of A Detailed Gasoline Composition Based Octane Model, Industrial & Engineering Chemistry Research, Vol. 45, 2006, pp 337-345.