ارتقاء نفت سنگین و ته‌ماند حاصل از پالایش در محیط آب فوق‌بحرانی

نوع مقاله : ترویجی

نویسندگان

1 استادیار گروه پژوهشی انرژی‌های تجدید پذیر، پژوهشگاه نیرو، تهران، ایران

2 استاد دانشکده مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه تهران

چکیده

نفت سنگین و ته‌ماند حاصل از پالایش به‌دلیل کیفیت نامرغوب و ناخالصی‌های گوگردی‌– نیتروژنی و فلزی در هنگام مصرف یا استفاده در فرایندهای دیگر با چالش مواجه می‌شوند. اخیرا، تمایل برای توسعه روشی جدید در فرایند ارتقاء کاتالیستی-غیرکاتالیستی هیدروکربن‌های سنگین در محیط آب فوق بحرانی وجود دارد. دلیل این امر تغییرات اساسی در خواص فیزیکی-‌شیمیایی آب به‌عنوان حلال تحت آن شرایط می‌باشد، چراکه خواص انحلالی و انتقالی آب در شرایط فوق‌بحرانی دستخوش تغییر فراوانی می‌گردد.‌ هیدروکربن سنگین در این شرایط به‌راحتی در آب حل شده و مقاومت‌های انتقال جرم جهت نفوذ واکنشگر روی سطح کاتالیست حذف می‌شود. آب در شرایط فوق بحرانی دارای دانسیته و ضریب نفوذ بالایی بوده که انباشت کک تشکیل شده بر روی کاتالیست را نیز غیر‌ممکن می‌سازد. این مقاله مروری بر تحقیقات صورت گرفته در این زمینه می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Upgrading Heavy oil and Residua in Supercritical Water

نویسندگان [English]

  • Morteza Hosseinpour 1
  • Shohreh Fatemi 2
1 Renewable Energy Department, Niroo Research Institute (NRI), Tehran, Iran
2 School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

There are manychallenges during utilization of heavy oil and residue due to low quality as well as substantial amount of heteroatoms existed there. Recently, considerable attention has been paid to develop catalytic and non-catalytic heavy oil upgrading in supercritical water (SCW) environment. The reason can be attributed to the substantial adaptation in the physicochemical properties of SCW, including solvation and transport properties, that makes SCW nice candidate for heavy oil treatment. High density and diffusivity of SCW lead to elimination of all mass transfer barriers from reactant diffusion on catalyst surface, while the accumulation of coke over catalyst is suppressed. This article gives a detailed aspects of heavy oil upgrading in SCW.

کلیدواژه‌ها [English]

  • Supercritical water
  • Heavy oil
  • Catalytic Upgrading
  • Non-Catalytic Cracking
[1] Diaz, O.C., Modares ghazani, J., Satyro, M.A., Yarranton, H.W. (2011). Modeling the phase behavior of heavy oil and solvent mixtures, Fluid Phase Equilibria, 304, 74–85.
[2]  Zhao, S., Sparks, B.D., Kotlyar, L.S., (2007). Correlation of process ability and reactivity data for residua from bitumen, heavy oils and conventional crudes: characterization of fractions from super-critical pentane separation as a guide to process selection, Catalyst Today, 125, 122–136.
[3] Luis C. Casta˜neda, José A.D. Mu˜noz, Jorge Ancheyta, (2014) Current situation of emerging technologies for upgrading of heavy oilsLuis, Catal. Today, 222, ‌248– 273.
[4]  Rana, M.S., Samano, V., Ancheyta, J., Diaz, J.A.I. ( 2007). A review of recent advances on process technologies for upgrading of heavy oils and residua, Fuel, 86, 1216–1231.
[5]  Ancheyta, J., (2011). Modeling and Simulation of Catalytic Reactors for Petroleum Refining, 1st ed. John Wiley & Sons, Inc., Hoboken, New Jersey.
[6]  Oelderik, J.M., (1989). Progress in the catalysis of the upgrading of petroleum residue – a review of 25 years on residue hydroconversion technology. App. Catal. 47, 1–24.
[7] Bozbag, S.E., Sanli, D., Erkey, C., (2012). Synthesis of nanostructured materials using supercritical CO2: Part II. Chemical transformations, J. Mat. Science, 47, 3469–3492.
[8] Clifford, T., Bartle, K. (1996). Chemical reactions in supercritical fluids. Chemistry and Industry (London), 12, 449–452.
[9] Krammer, P., Vogel, H., (2000). Hydrolysis of esters in subcritical and supercritical water. J. Supercritical Fluids 16, 189–206.
[10] Sanli, D., Bozbag, S.E., Erkey, C., (2012). Synthesis of nanostructured materials using supercritical CO2: Part I. Physical transformations, J. Mat. Science, 47, 2995–3025.
[11] Savage, P.E., (1999). Organic chemical reactions in supercritical water. Chem. Rev. 99, 603–621.
[12] Shaw, R.W., Brill, T.B., Clifford, A.A., Eckert, C.A., Franck, E.U., (1991). Supercritical water – a medium for chemistry. Chem& Eng.News, 69, 26–39.
[13] Subramaniam, B., Mchugh, M.A., 1986. Reactions in supercriticalfluids – a review. Ind. Eng. Chem.Process Des.and Develop., 25, 1–12.
[14] Starling, K.E., 1978. In: Reid, Robert C., Prausnitz, John M., Sherwood, Thomas K. (Eds.), The Properties of Gases andLiquids. , 3rd ed. McGraw-Hill, New York City (1977, 688 pages, 27.50. AIChE Journal 24, 1142–1142).
[15] Broll, D., Kaul, C., Kramer, A., Krammer, P., Richter, T., Jung, M., Vogel, H., (1999). Chemistry in supercritical water. Ang. Chemie Int. Edition, 38, 2999–3014.
[16] Akiya, N., Savage, P.E., (2002). Roles of water for chemical reactionsin high-temperature water. . Chemical Review. 102, 2725–2750.
[17] Sato, S., Takanohashi, T.,(2010). Effect of supercritical water on upgrading reaction of oilsand bitumen. J. Supercrit.Fluids, 55, 223–231.
[18] Kishita, A., Takahashi, S., Kamimura, H., Miki, M., Moriya, T., Enomoto, H., (2002). Hydrothermal visbreaking of bitumen in supercritical water with alkali. J. the Japan Petr.Institute. 45, 361–367.
[19] Kishita, A., Takahashi, S., Kamimura, H., Miki, M., Moriya, T., Enomoto, H., 2003. Upgrading of bitumen by hydrothermalvisbreaking in supercritical water with alkali. J Japan Petroleum Institute. 46, 215–221.
[20] Tago, T., Masuda, T., 2010. Heavy oil upgrading in supercritical water using iron based catalyst. In: 20th Annual Saudi–Japan Symposium, Dhahran, Saudi Arabia.
[21] Watanabe, M., Kato, S., Ishizeki, S., Inomata, H., Smith, R.L., (2010).Heavy oil upgrading in the presence of high density water: basic study. . J. SuperFluids‌.53, 48–52.
[22] Morimoto, M., Sugimoto, Y., Saotome, Y., Sato, S., Takanohashi, T., (2012). Effect of water properties on the degradative extraction of asphaltene using supercritical water. J. SuperFluids, 68, 113–116.
[23] Uematsu, M., Franck, E.U., 1980. Static dielectric-constant of water and steam. J. Phys. ChemRef Data, 9, 1291–1306.
[24] Redelius, P.G. (2000). Solubility parameters and bitumen. Fuel, 79, 27–35.
[25] Sato, T., Mori, S., Watanabe, M., Sasaki, M., Itoh, N., (2010).Upgrading of bitumen with formic acid in supercritical water, J. Sup Fluids 55, 232–240.
[26] Chung, K.H., Xu, C.M., Hu, Y.X., Wang, R.N., 1997. Supercritical fluid extraction reveals resid properties. Oil Gas J. 95, 66–69.
[27] Peng, C.L., Wang, R.A., Fan, Y.H., Yang, G.H., 1988. Fractional destruction of non-volatile residue. In: Proceedings of the International Sympo. on Supercritical Fluids, Nice, France, p. 899.
[28] Sato, M., Goto, M., Hirose, T., (1996). Supercritical fluid extraction on semi batch mode for the removal of terpene in citrus oil.Ind. Eng. Chem.Res, 35, 1906–1911.
[29] Yang, G.H., Fan, Y.H., Wang, R.N., Jia, S.S., 1991. The Extraction of Petroleum Residua with Light-Hydrocarbon Fractions under Supercritical Conditions. Int. Academic Publ., Beijing.
[30] Canel, M. (1994). Extraction of solid fuels with sub- and supercritical water. Fuel‌, 73, 1776–1780.
[31] El harfi, K., Bmennouna, C., Mokhlisse, A., Ben Chanâa, M., Lemée, L., Joffre, J., Amblès, A., (1999). Supercritical fluid extraction of Moroccan (Timahdit) oil shale with water. J. Anal. and AppPyrolysis, 50, 163–174.
[32] Han, L.-N., Zhang, R., Bi, J.-C., (2008). Upgrading of coal-tar pitch in supercritical water. J. Fuel Chem and Technol., 36, 1–5.
[33] Han, L.N., Zhang, R., Bi, J.C., (2009). Experimental investigation of high-temperature coal tar upgrading in supercritical water. Fuel Proc. Techno.. 90, 292–300.
[34] Tucker, J., Masri, B., Lee, S., (2000). A comparison of retorting and supercritical extraction techniques on El-Lajjun oil shale. Energy Sources, 22, 453–463.
[35] Meng, M., Hu, H., Zhang, Q., Ding, M., (2006). Extraction of Tumuji oil sand with sub- and supercritical water. Energy Fuel 20, 1157–1160.
[36] Zhao, L.Q., Cheng, Z.M., Ding, Y., Yuan, P.Q., Lu, S.X., Yuan, W.K., (2006). Experimental study on vacuum residuum upgrading through pyrolysis in supercritical water. Energy Fuel 20, 2067–2071.
[37] Antal, M.J., Brittain, A., Dealmeida, C., Ramayya, S., Roy, J.C., (1987).Heterolysis and homolysis in supercritical water. ACS Symposium Series. 329, 77–86.
[38] Vilcaez, J., Watanabe, M., Watanabe, N., Kishita, A., (2012). Hydrothermal extractive upgrading of bitumen without tcoke formation. Fuel 102, 379–385.
[39] Cheng, Z.-M., Ding, Y., Zhao, L.-Q., Yuan, P.-Q., Yuan, W.-K., 2009.Effects of supercritical water in vacuum residue upgrading. Energy Fuel, 23, 3178–3183.
[40]  Wahyudiono Shiraishi, T., Sasaki, M., Goto, M., 2011. Non-catalytic liquefaction of bitumen with hydrothermal/solvothermal process. J. Super. Fluids, 60, 127–136.
[41] Kozhevnikov, I.V., Nuzhdin, A.L., Martyanov, O.N., 2010.Transformation of petroleum asphaltenes in supercritical water. J. Super. Fluids, 55, 217–222.
[42]  National Energy Board, 2006. Canada’s Oil Sands – Opportunities and Challenges to 2015: An Update – June (2006). National Energy Board.
[43] Sato, T., Tomita, T., Trung, P.H., (2013). Upgrading of bitumen in the presence of hydrogen and carbon dioxide in supercritical water. Energy Fuel 27, 646–653.
[44] Banerjee, D.K., 12 April 2011. Supercritical water processing of extra heavy crude in slurry-phase up-flow reactor system. Publication no. US7922895 B2.
[45] Funai S., Fumoto E. (2010), Recovery of useful lighter fuels from petroleum residual oil by oxidative cracking with steam using iron oxide. Chem. Eng Sci., 65, 60 – 65.
[46] Fedyaeva O.N., (2012), Hydrogenation of bitumen in situ in supercritical water flow with and without addition of zinc and aluminum. J. Super Fluids, 72, 100– 110.
[47] Clark, P. D., Kirk, M. J. (1994), Studies on the upgrading of bituminous oils with water and transition metal catalysts, Energy and Fuels, 8380-387.
[48] Modell, M., 1989. In: Freeman, H.M. (Ed.), Standard Handbook of Hazardous Waste Treatment and Disposal. McGraw-Hill, NewYork.
[49] Zhang, X., Savage, P.E., (1998). Fast catalytic oxidation of phenol in supercritical water. Catalyst Today, 40, 333–342.
[50] Scott, D.S., Radlein, D., Piskorz, J., Majerski, P., de Bruijn, T.J.W.,2001. Upgrading of bitumen in supercritical fluids. Fuel 80,1087–1099.
[51] Kawasaki, H., 2002. Refining method of heavy carbon resources by supercritical water oxidation. Japanese Patent 2002155286.
[52]  Lee, J.H., Foster, N.R., (1996). Direct partial oxidation of methane to methanol in supercritical water. J. Supercritical Fluids, 9, 99–105.
[53] Sato, T., Watanabe, M., Smith, R.L., Adschiri (2004). Analysis of the density effect on partial oxidation of methane in supercritical water. J. Super Fluids, Fluids 28, 69–77.
[54] Armbruster, U., Martin, A., Krepel, A., (2001). Partial oxidation of propane in sub- and supercritical water. J. Super Fluids, 21,233–243.
[55] Kim, Y.L., Kim, J.D., Lim, J.S., Lee, Y.W., Yi, S.C., (2002). Reaction pathway and kinetics for uncatalyzed partial oxidation of p-xylene in sub- and supercritical water, Ind Eng Chem Res., 41, 5576–5583.
[56] Lilac, W.D., Lee, S., (2001). Kinetics and mechanisms of styrene monomer recovery from waste polystyrene by supercritical water partial oxidation. Adva in Env Res, 6, 9–16.
[57] Watanabe, M., Mochiduki, M., Sawamoto, S., Adschiri, T. (2001). Partial oxidation of n-hexadecane and polyethylene in supercritical water. J. Super Fluids, 20, 257–266.
[58]  Adschiri, T., Shibata, R., Sato, T., Watanabe, M., Arai, K., 1998.Catalytic hydrodesulfurization of dibenzothiophene through hpartial oxidation and a water-gas shift reaction in supercritical water.Ind& Eng Chem Res, 37, 2634–2638.
[59] Arai, K., Adschiri, T., Watanabe, M., 2000. Hydrogenation of hydrocarbons through partial oxidation in supercritical water. Ind& Eng Chem Res, 39, 4697–4701.
[60] Sato, T., Trung, P.H., Tomita, T., Itoh, N., (2012), Effect of water density and air pressure on partial oxidation of bitumen in supercritical water. Fuel 95, 347–351.
[61] Sato, T., Adschiri, T., Arai, K., Rempel, G.L., Ng, F.T.T., (2003).Upgrading of asphalt with and without partial oxidation insupercritical water. Fuel 82, 1231–1239.
[62] Khorasheh, F., Gray, M.R., 1993. High-pressure thermal-cracking of n-hexadecane. Ind. Eng. Chem. Res. 32, 1853–1863.
[63]  Yuan, P.-Q., Cheng, Z.-M., Jiang, W.-L., (2005). Catalytic desulfurization of residual oil through partial oxidation in supercritical water J. Super Fluids, 35, 70–75.
[64] Leif, R.N., Simoneit, B.R.T., (2000). The role of alkenes produced during hydrous pyrolysis of a shale. Organic Geochemistry. 31, 1189–1208.
[65] Ederer, H.J., Kruse, A., Mas, C., Ebert, K.H., (1999). Modelling of thepyrolysis of tert-butylbenzene in supercritical water. J. Super Fluids, 15, 191–204.
[66] Watanabe, M., Hirakoso, H., Sawamoto, S., Adschiri, T., Arai, K., (1998). Polyethylene conversion in supercritical water. J. Super Fluids, 13, 247–252.
[67] Yuan, P.Q., Zhu, C.C., Liu, Y., Bai, F., Cheng, Z.M., 2011.Solvation of hydrocarbon radicals in sub-CW and SCW: an abinitio MD study. J. Super Fluids 58, 93–98.
[68] Dutta, R.P., McCaffrey, W.C., Gray, M.R., (2000).Thermal cracking of Athabasca bitumen: influence of steam on reaction chemistry. Energy Fuel 14, 671–676.
[69] Katritzky, A.R., Nichols, D.A., Siskin, M., Murugan, R., Balasubramanian, M., (2001). Reactions in high-temperatureaqueous media. Chem Rev, 101, 837–892.
[70] Moriya, T., Enomoto, H., 1999. Role of water in conversion ofpolyethylene to oils through supercritical water cracking. Kagaku Kogaku Ronbunshu, 25, 940–946.
[71] Zhu, D.O, Liu, Q.K., Tan, X.C., Yangm J.Y, Yuan P.Q, Cheng, Z.M, Yuan, W.K., (2013), Structural Characteristics of Asphaltenes Derived from Condensation of Maltenes in Supercritical Water, Energy Fuels, 2015, 29 (12), 7807–7815.
[72] Hosseinpour M, Fatemi S, Ahmadi SJ. (2016), Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. Part I: Non-catalytic cracking. J. Supercrit. Fluids; 107, 278–285.
[73]  Hosseinpour, M., Fatemi, S., Ahmadi, S.J. (2016), Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. Part II: Hydrogen donating capacity of water in the presence of iron (III) oxide. J. Supercrit. Fluids; 110, 75–82.
[74] Hosseinpour, M., Fatemi, S., Ahmadi S.J. (2015), Catalytic cracking of petroleum vacuum residue in supercritical water media: Impact of α-Fe2O3 in the form of free nanoparticles and silica-supported granules. Fuel; 159, 538–549.
[75] Hosseinpour M., AhmadiS.J., Fatemi S. (2015), Successive co-operation of supercritical water and silica-supported iron oxide nanoparticles in upgrading of heavy petroleum residue: suppression of coke deposition. J. Supercrit. Fluids 100, 70–78.
[76] Yan T., Xu J., Wang L., Liu Y., Yang C. , Fang T., (2015), A review of upgrading heavy oils with supercritical fluids, RSC Adv.5, 75129-75140
[77] Arcelus-Arrillaga P., Pinilla J. L., Hellgardt, K., M. Millan (2017), Application of Water in Hydrothermal Conditions for Upgrading Heavy Oils: A Review. Energy Fuels, 31, 4571–4587.