مقایسه مدل‌های تک فاز و دوفاز در پیش بینی عملکرد هیدرودینامیکی و گرمایی نانوسیال

نوع مقاله : ترویجی

نویسندگان

1 دانشیار دانشکده مهندسی شیمی، نفت و گاز، دانشگاه سمنان، سمنان، ایران

2 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشگاه سمنان، سمنان، ایران

چکیده

در این مقاله مدل‌های تک فازی و دوفازی، برای پیش­بینی عملکرد هیدرودینامیکی و گرمایی نانوسیال معرفی می­شود. نانوسیال به عنوان محیط جدید انتقال حرارت، از پراکندن­ نانوذرات در ساخته می­شود. در مدل­های تک فازی فرض می­شود نانوسیال مانند سیال مجازی همگن رفتار می­کند. در مدل‌های دوفازی اندرکنش‌های بین ذرات و سیال نیز در نظر گرفته می‌شوند. هر دو نوع مدل در هیدرودینامیک پیش بینی یکسانی دارند، اما در توزیع دما تفاوت دارند. زیرا عوامل موثر انتقال حرارت در مدل­های دوفازی لحاظ می­شود. در غلظت کم نانو ذرات، می‌توان از اثرات ذرات فاز پراکنده بر میدان جریان فاز پیوسته صرف نظر و از مدل تک فازی استفاده کرد. در غلظت زیاد، برهم‌کنش میان ذرات و سیال مهم شده لازم است مدل‌های دوفازی به کار گرفته ‌شوند. با توجه به نوع مساله، امکانات موجود و دقت مورد نیاز، می توان از مدل­های تک فاز و یا دو فاز استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of single-phase and two-phase models on Hydrodynamic and thermal performance prediction of nanofluid

نویسندگان [English]

  • faramarz hormozi 1
  • zahra sarbazi 2
1 Associate Professor of Chemical Engineering, Faculty of Chemical Engineering, Oil and Gas, Semnan University, Semnan, Iran
2 Master of Chemical Engineering,Faculty of Chemical Engineering, Oil and Gas, Semnan University, Semnan, Iran
چکیده [English]

In this paper, single and two-phase CFD models are introduced for predicting the thermo-hydraulic behavior of nanofluids. In single-phase models, behavior of nanofluid is similar to that of observed in conventional fluids and interactions between particles and base fluid are negligible. In two-phase models, interactions between nanoparticles and base fluid is taken into consideration. Both models showed the identical prediction for the heat transfer behavior, however, the temperature distribution of nanofluid was different, since in two-phase model, the parameters affecting the heat transfer are considered in the model. At low concentrations of nanofluid, it is a logical assumption to ignore the influence of dispersed phase (nanoparticle) on the flow field (continuous phase). Thus, the single phase is suitable for low-concentration nanofluids, while two-phase model is appropriate for nanofluids with high concentrations. Overall, one can use single or two-phase models depending on the type of problem, available computational facilities and accuracy.

کلیدواژه‌ها [English]

  • Nanofluids
  • Computational Fluid Dynamics
  • Single-Phase Model
  • Two-phase Model
  • Heat Transfer
1. Saidur, R., Leong K. Y., Mohammad H. A., A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, Vol. 15, 2011, pp. 1646-1668.
2. Keblinski P., Eastman J.A., Cahill D.G., Nanofluid for thermal transport, Material study, Vol. 8, 2005, pp. 36-44.
3. Choi U.S., Enhancing thermal conductivity of fluids with nano-particles, ASME, Fluids Engineering Division, Vol. 231, 1995, pp. 99–103.
4. Trisaksri V., Wongwises S., Critical review of heat transfer characteristics of nanofluids, Renewable and Sustainable, Energy Review, Vol. 11, 2007, pp. 512-524.
5. Khoshvaght-Aliabadi M., Hormozi F., Zamzamian A., Role of channel shape on performance of plate-fin heat exchangers: Experimental assessment, International Journal of Thermal Sciences, Vol. 79, 2014, pp. 183-193.
6. Hosseinirad E., Hormozi F., Performance intensification of miniature channel using wavy vortex generator and optimization by response surface methodology: MWCNT-H2O and Al2O3-H2O nanofluids as coolant fluids, Chemical Engineering & Processing: Process Intensification, Vol. 124, 2018, pp. 83-96.
7. Kamalgharibi M., Hormozi F., Zamzamian A., Sarafraz M. M., Experimental studies on the stability of CuO nanoparticles dispersed in different base fluids: influence of stirring, sonication and surface active agents, Heat Mass Transfer, Vol. 52, 2016, pp. 56-62.
8. Kamal M. G., Zamzamian A., Hormozi F., Experimental Study of Stability of Deionized Water Based Copper Oxide Nanofluid and Achievement to the Optimal Stability Conditions, AMIRKABIR JOURNAL OF MECHANICAL ENGINEERING (AMIRKABIR), Vol. 48, 2016, pp. 9-12.
9. Khoshvaght-Aliabadi M., Hormozi F., Zamzamian A., Effects of geometrical parameters on performance of plate-fin heat exchanger: Vortex-generator as core surface and nanofluid as working media, Applied Thermal Engineering, Vol. 70, 2014, 565-579.
10. Kamyar A, Saidur R and Hasanuzzaman M., Application of Computational Fluid Dynamics (CFD) for nanofluids, International Journal of Heat and Mass Transfer, Vol. 55, 2012, pp. 4104–4115.
11. Wang X.Q and Mujumdar A.S., Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci., Vol. 46, 2007, pp. 1–19.
12. Ding Y, Chen H, Wang L., Heat transfer intensification using nanofluids, KONA. Vol. 25, 2005, pp. 23–28.
13. Kakac S, Pramuanjaroenkij A., Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, Vol. 52, 2009, pp. 3187–3196.
14. Vidonscky P. R., Augusto F., Review of the mechanisms responsible for heat transfer enhancement using nanofluids, Applied Thermal Engineering, Vol. 108, 2016, pp. 720-739
15. Pirahmadian M.H and Ebrahimi A., Theoretical Investigation Heat Transfer Mechanisms in Nanofluids and the Effects of Clustering on Thermal Conductivity.International journal of Bioscience, Biochemistry and Bioinformatics, Vol 2, 2012, pp. 90-94.
16. Hussien A.A., Abdullah M.Z. and Al-Nimr M.A., Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications, Applied Energy, Vol 164, 2016, pp. 733–755.
17. Behroyan I., Vanaki Sh.M., Ganesan, P. and Saidur R., A comprehensive comparison of various CFD models for convective heat transfer of Al2O3 nanofluid inside a heated tube, International Communications in Heat and Mass Transfer, Vol70, 2016, pp. 27-37.
18. Maxwell, J. C. A Treatise on Electricity and Magnetism. Clarendon Press, Oxford, UK, second edition, 1881.
19. Hamilton, R. L. and Crosser, O. K. Thermal conductivity of heterogeneous two-component systems. I&EC Fundam, Vol 1, 1962, pp. 182–191.
20. Rudyak V.Ya. And Krasnolutskii S.L., Dependence of the viscosity of nanofluids on nanoparticle size and material, Physics Letters A, Vol. 378, 2014, pp1845-1849.
21. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. Transport Phenomena, John Wiley & Sons, 2002.
22. Tseng, W. and Lin, K.-C. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Material Science and Engineering: A, Vol 355, 2003, pp. 186–192.
23. Maiga, S. E. B., Nguyen, C. T., Galanis, N., and Roy, G. Hydrodynamic and thermal behaviors of a nanofluid in a uniformly heated tube. Vol. 5 of Computational Studies, WIT Press, 2004.
24. Koo J., Kleinstreuer C., A new thermal conductivity model for nanofluids, Journal of Nanoparticle Research, Vol. 6, 2004, pp. 577-588.
25. Kulkarni, D. P., Das, D. K., and Chukwu, G., Temperature dependent rheological property of copper oxide nanoparticles suspension (Nanofluid), Journal of Nanoscience and Nanotechnology, Vol. 6, 2006, pp. 1150–1154.
26. Corcione M., Rayleigh-Benard convection heat transfer in nanoparticle suspensions. International Journal of Heat Fluid Flow,Vol. 32, 2011, pp. 65-77.
27. Vakili-Nezhaad G. and Dorany A. Effect of single-walled carbon nanotube on the viscosity of lubricants. Energy Procedia,Vol. 14, 2012, pp. 512–517.
28. Hemmat Esfe M., Saedodin S., Mahian O. and Wongwises S., Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. International Communication Heat and Mass Transfer,Vol. 58, 2014, pp.176–183.
29. Nabil M.F, Azmi W.H, Abdul Hamid K. et al. An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture. Int. Commun. Heat Mass Trans.Vol. 86, 2017, pp. 181–189.
30. Xuan Y. and Roetzel W., Conceptions for heat transfer correlation of nanofluids, International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp. 3701-3707.
31. Koo J. and Kleinstreuer C., Laminar nanofluid flow in microheat-sinks, International Journal of Heat and Mass Transfer, vol. 48, 2005, pp. 2652-2661.
32. Göktepe S., Atalık K. and Ertürk H., Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube. International Journal of Thermal Sciences, Vol. 80, 2014, pp. 83-92.
33. Ranade V., Computational flow modeling for chemical reactor engineering, Academic press, india, 2002.
34. Akbarinia A., Laur R., Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach, International jouranal of Heat Fluid Flow, Vol. 30, 2009, 706-714.
35. Chen Y., Li Y. , Liu Zh., Numerical simulations of forced convection heat transfer and flow characteristics of nanofluids in small tubes using two-phase models, International Journal of Heat and Mass Transfer, Vol. 78, 2014, pp. 993-1003
36. Akbari M., Galanis,N. and Behzadmehr A., Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer, International Journal of Thermal Sciences, Vol. 50,2011,pp. 1343-1354.
37. Keshavarz Moraveji M. and Esmaeili E., Comparison between single-phase and two-phases CFD modeling of laminar forced convection flow of nanofluids in a circular tube under constant heat flux, International Communications in Heat and Mass Transfer, Vol. 39,2012, pp. 1297-1302
38. Mahdavi M., Sharifpur M. and Meyer J.P., CFD modelling of heat transfer and pressure drops for nanofluids through vertical tubes in laminar flow by Lagrangian and Eulerian approaches. International Journal of Heat and Mass Transfer. Vol. 88, 2015, pp. 803–813.
39. Heshmati F. and Ertürk H., Single-phase models for improved estimation of friction factor for laminar nanofluid flow in pipes, International Journal of Heat and Mass Transfer, Vol. 95, 2016, pp. 416-425.
40. Albojamal A. and Vafai K., Analysis of single phase, discrete and mixture models, in predicting nanofluid transport. International Journal of Heat and Mass Transfer, Vol. 114, 2017, pp. 225–237.
41. زهرا سربازی و فرامرز هرمزی، بررسی تجربی و عددی عملکرد حرارتی نانوسیال در کانال با سطح مقطع‌های مختلف فین، پایان نامه کارشناسی ارشد، 1396، دانشکده مهندسی شیمی-نفت و گاز، دانشگاه سمنان.
42. Akbari M., Galanis, N.and  Behzadmehr A., Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection, International Journal of  Heat and Fluid Flow, Vol. 37,2012, pp. 136-146.
43. Keshavarz Moraveji M. and Mohammadi Ardehali R., CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2o3/water nanofluid in mini-channel heat sink, International Communications in Heat and Mass Transfer, Vol. 44 ,2013, pp. 157–164.
44.Yari Ghale Z., Haghshenasfard M. and Nasr Esfahany M., Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models, International Communications in Heat and Mass Transfer, Vol. 68,2015, pp. 122-129.
45. Behroyan I., Ganesan P., He S.  And Sivasankaran S., Turbulent forced convection of Cu–water nanofluid: CFD model comparison, International Communications in Heat and Mass Transfer, vol. 67, 2015, pp.163-172.
46. Davarnejad R. and Jamshidzadeh M., CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow. Engineering Science and Technology, an International Journal. Vol. 18, 2015, 536-542.
47. Kumar N. and Puranik B.P., Numerical study of convective heat transfer with nanofluids in turbulent flow using a Lagrangian-Eulerian approach, Applied Thermal Engineering, Vol. 111, 2017, pp. 1674–1681.
48. Liu F., Cai Y., Wang L. and Zhao J., Effects of nanoparticle shapes on laminar forced convective heat transfer in curved ducts using two-phase model, International Journal of Heat and Mass Transfer, Vol. 116, 2018, pp. 292–305