پیشرفت‌های اخیرصورت گرفته در فناوری کاتالیست‌های فرایند شکست کاتالیستی بستر سیال

نوع مقاله : ترویجی

نویسندگان

1 عضو هیات علمی/پژوهشگاه پلیمر و پتروشیمی ایران

2 پژوهشکده پتروشیمی، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران

چکیده

شکست کاتالیستی بستر سیال (FCC) یکی از بزرگترین و مهم‌ترین فناوری‌های تبدیل در صنعت پالایشگاهی نفت است و در حال حاضر بیشترین میزان بنزین جهان و همچنین بخش مهمی از پروپیلن مورد نیاز صنعت پلیمر را تولید می‌کند. در این مقاله، مروری کامل از ترکیب کاتالیست FCC و پیشرفت‌ها و تغییرات صورت گرفته در تهیه‌ی آن از ابتدا تا به امروز ارائه شده است. همچنین روند تغییرات ایجاد شده در خوراک‌های نفتی و جهت‌گیری به سمت تولید مقادیر بیشتری از پروپیلن و سوخت‌های دیزلی ارائه شد. روند تحقیقات انجام شده بر روی کاتالیست FCC با تمرکز بر روی روش‌های ارائه شده برای بهبود پایداری زئولیت‌ها و گزینش‌پذیری کاتالیست که با راهکارهایی چون افزودن عناصر خاکی کمیاب و فسفر، سنتز سیستم‌های حفره‌ای انشعابی و همچنین استفاده از ساختارهای زئولیتی جدید انجام شده است، به تفصیل گزارش شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Recent Developments in FCC Catalyst Technology

نویسندگان [English]

  • SARA TARIGHI 1
  • Nafise Modanlou Juibari 2
1 Academic Staff/ Iran Polymer and Petrochemical Institute
2 Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, Tehran, Iran
چکیده [English]

Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world’s gasoline as well as an important fraction of propylene for the polymer industry. In this review, we give an overview of catalyst materialas well as the latest trends in its preparation technology from the beginning to the present. After providing some general background of the FCC process, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite stability, selectivity by the addition of rare earth elements and phosphorus, constructing hierarchical pores systems and also the introduction of new zeolite structures.

کلیدواژه‌ها [English]

  • FCC
  • Catalyst
  • Zeolite
  • Catalytic Cracking
[1]Sadeghbeigi, R., Fluid catalytic cracking handbook: An expert guide to the practical operation, design, and optimization of FCC units, Elsevier, 2012.
[2] McAfee, A. M., The Improvement of High Boiling Petroleum Oils, and the Manufacture of Gasoline as a By-product There from, by the Action of Aluminum Chlorid, Journal of  Industrial and Engineering Chemistry,Vol. 7, 1915, pp. 737–741.
[3] Speight, J. G., The Chemistry and Technology of Petroleum, 4th edn, 2006.
[4] Thayer, A. M., The Catalysis Chronicles, Chemical Engineering News, Vol. 91, 2013, pp. 64–68.
[5] Enos, J. L., Invention and innovation in the petroleum refining industry. In The rate and direction of inventive activity: Economic and social factors, Princeton University Press, 1962.
[6] Rase, H. F., Handbook of commercial catalysts: heterogeneous catalysts, CRC press 2000.
[7] Murphree, E. V., Brown, C. L., Fischer, H. G. M., Gohr, E. J. and Sweeney, W. J., Fluid Catalyst Process. Catalytic Cracking of Petroleum, Journal of Industrial and Engineering Chemistry, Vol. 35, 1943, pp. 768–773.
[8] Campbell, D. L., Martin, H. Z., Murphree, E. V., Tyson, C. W., Method of and apparatus for contacting solids and gases, US Pat., 2451804, 1948.
[9] Shankland, R., Industrial Catalytic Cracking, Advanced Catalysis, Vol. 6, 1954, pp. 271–434.
[10] Biswas, J., Maxwell, I. E., Recent process-and catalyst-related developments in fluid catalytic cracking, Applied Catalysis,Vol. 63, 1990, pp. 197–258.
[11] Baerlocher, C., McCusker, L. B., Olson, D. H., Atlas of Zeolite Framework Types, Elsevier, Amsterdam, 2007.
[12] Breck, D. W., Crystalline zeolite Y, US Pat., 3130007, 1964.
[13] Argauer, R. J. and Landolt, G. R.,Crystalline zeolite ZSM-5 and method of preparing the same, US Pat., 3702886, 1972.
[14] Dupain, X., Makkee, M.  Moulijn, J. A., Optimal conditions in fluid catalytic cracking: A mechanistic approach, Applied Catalysis A, Vol. 297, 2006, 198–219.
[15] سارا طریقی، علی افشار ابراهیمی، دستگاه مایکرواکتیویتی جهت سنجش فعالیت انواع کاتالیست­های FCC، شماره ثبت 91915، 1396.
 [16] سارا طریقی، علی افشار ابراهیمی، فرایند شکست کاتالیستی برش­های سنگین نفتی در مقیاس پایلوت، شماره ثبت 90366، .1395
[17] Vogt, E. T. C., Weckhuysen B. M., Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis, Chemical Society Reviews, Vol. 44, 2015, pp. 7342-7370.
[18] سارا طریقی، علی افشار ابراهیمی، تبدیل نفت کوره (مازوت) به پروپیلن و سایر الفین­های سبک، 84871، 1393.
[19] سارا طریقی، علی افشار ابراهیمی،فرآیند تبدیل نفت کوره (مازوت) به بنزین و سایر سوختهای با ارزش تر از جمله دیزل، شماره ثبت 85641، 1394.
[20] علی افشار ابراهیمی، سارا طریقی، تبدیل ته‌ماند برج تقطیر به الفینهای سبک، بنزین و محصولات میان تقطیر، شماره ثبت 87200، 1394.
[21] سارا طریقی، علی افشار ابراهیمی، فرآیند تبدیل نفت گاز سنگین واحد خلا (HVGO) به پروپیلن، سایر الفینهای سبک، بنزین و محصولات میان تقطیر. شماره ثبت: 86706 – 1394
[22] Knight, J., Mehlberg, R., Maximize propylene from your FCC unit: Innovative use of catalyst and operating conditions increases on-purpose olefin production, Hydrocarbon Processing, Vol. 90, 2011, pp. 91–95.
[23] Tarighi,S., Afshar Ebrahimi,A., Mohammadi Ghayeghchi, M., Bakshi Ani,A., Lump kinetic study of waxy distillate catalytic cracking in microactivity tests, Petroleum Science and Technology, Vol. 35, 2017, pp. 16-21.
[24] AfsharEbrahimia A.,Tarighi, S., The Influence of Temperature and Catalyst Additives on Catalytic Cracking of a Heavy Fuel Oil, Petroleum Science and Technology, Vol. 33, 2015, pp. 415–421.
[25] Hamada, R., Watabe, M., More Propylene in FCC Units, Catalyst Research Center, JGC Catalysts and Chemicals Ltd. 2008.
[26] Corma, A., Martı´nez-Triguero, J., Valencia, S., Benazzi, E., Lacombe, S., IM-5: A highly thermal and hydrothermal shape-selective cracking zeolite, Journal of Catalysis, Vol. 206, 2002, 125–133.
[27] Degnan, T. F., CHitnis, G. K., and Schipper, P. H., History of ZSM-5 fluid catalytic cracking additive development at Mobil, Microporous and Mesoporous Materials, Vol. 35, 2000, pp. 245–252.
[28] Biswas, J., Maxwell, I. E., Recent process-and catalyst-related developments in fluid catalytic cracking, Applied Catalysis, Vol. 63, 1990, pp. 1–18.
[29] سارا طریقی، علی افشار ابراهیمی، جهت دهی فرایند شکست کاتالیستی به سمت تولید اتیلن با استفاده از افزودنی کاتالیستی زئولیت ZSM-5، شماره ثبت92117، 1396.
[30] Xue, N., Olindo, R., Lercher, J., Impact of forming and modification with phosphoric acid on the acid sites of HZSM-5, Journal of Physical Chemistry C, Vol. 114, 2010, pp. 15763–15770.
[31] Van der Bij, H. E., Weckhuysen, B. M., Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis, Chemical Society Reviews, Vol. 44, 2015, pp. 7406-7428.
[32] Van der Bij, H. E., Phosphatation of Zeolites: A Combined Spectroscopy, Microscopy and Catalysis Study, PhD thesis, Utrecht University, 2014.
[33] Li, K., Valla, J., Garcı´a-Martı´nez, J., Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking, Chem. Cat. Chem., Vol. 6, 2014, pp. 46–66.
[34] Na, K., Choi, M., Ryoo, R., Recent advances in the synthesis of hierarchically nanoporous zeolites, Microporous and Mesoporous Materials, Vol. 166, 2013, pp. 3–19.
[35] Moliner, M., Direct Synthesis of Functional Zeolitic Materials, ISRN Material Sciences, 2012, 789525.
[36] Serrano, D. P., Escola, J. M., Pizarro, P., Synthesis strategies in the search for hierarchical zeolites, Chemical Society Reviews, Vol. 42, 2013, pp. 4004–4035.
[37] Lupulescu, A. I., Rimer, J. D., Tailoring Silicalite‐1 Crystal Morphology with Molecular Modifiers, Angewandte Chemie International Edition, Vol. 51, 2012, pp. 3345–3349.
[38] Garce´s, J. M., Olken, M. M., Lee, G. J., Meima, G. R., Jacobs, P. A., J. A., Martens, Shape Selective Chemistries with Modified Mordenite Zeolites, Topics in Catalysis, Vol. 52, 2009, pp. 1175–1181.
[39] Holm, M. S., Taarning, E., Egeblad, K., Christensen, C. H., Catalysis with hierarchical zeolites, Catalysis Today, Vol. 168, 2011, pp. 3–16.
[40] Groen, J. C., Peffer, L. A. A., Moulijn, J. A., Pe´rez-Ramı´rez, J., On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium,Microporous and Mesoporous Materials, Vol. 69, 2004, pp. 29-34.
[41] Groen, J. C., Moulijn, J. A., Pe´rez-Ramı´rez, J., Alkaline posttreatment of MFI zeolites. From accelerated screening to scale-up, Industrial and Engineerng Chemistry Research, Vol. 46, 2007, pp. 4193–4201.
[42] Verboekend D., Pe´rez-Ramı´rez, J., Towards a sustainable manufacture of hierarchical zeolites, ChemSusChem, Vol. 7, 2014, pp. 753–764.
[43] Verboekend, D., Vile´, G., Pe´rez-Ramı´rez, J., Mesopore formation in USY and beta zeolites by base leaching: selection criteria and optimization of pore-directing agents, Crystal Growth and Design, Vol. 12, 2012, pp. 3123–3132.
[44] Park, D. H., Kim, S. S., Wang, H., Pinnavaia, T. J., Papapetrou, M. C., Lappas, A. A., Triantafyllidis, K. S., Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores, Angewandte Chemie International Edition, Vol. 48, 2009, pp. 7645–7648.
[45] Garcı´a-Martı´nez, J., Xiao, C., Cychosz, K. A., Li, K., Wan, W., Zou, X., Thommes, M., Evidence of intracrystalline mesostructured porosity in zeolites by advanced gas sorption, electron tomography and rotation electron diffraction, ChemCatChem, Vol. 6, 2014, pp. 3110–3115.
[46] Garcı´a-Martı´nez, J., Li, K., Krishnaiah, G., A mesostructured Y zeolite as a superior FCC catalyst–from lab to refinery, Chemical Communications, Vol. 48, 2012, pp. 11841–11843.
[47] Corma, A., Grande, M. S., Gonzalez-Alfaro, V.,  Orchilles A. V., Cracking activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY zeolite, Journal of Catalysis, Vol. 159, 1996, pp. 375–382.
[48] Tarighi,S., Afroukhteh-Langaroudi,N., Khonakdar,H. A., Conversion of n-heptane over different catalysts: Effect of catalyst-to-oil ratio and temperature, Petroleum Scienceand Technology, Vol. 35, 2017, pp. 2201-2207.
[49] Tarighi, S., Afroukhteh-Langaroudi,N., Khonakdar,H. A., Catalytic cracking of n-hexane andn-heptane over ZSM-5 zeolite: Influence of SiO2/Al2O3 ratio, Petroleum chemistry, Accepted
[50] Derouane, E. G., Andre, J. M., Lucas, A. A., Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves, Journal of Catalysis, Vol. 110, 1988, pp. 58–73.
[51] Derouane, E. G., Andre´, J.-M, Lucas, A. A., A simple van der waals model for molecule-curved surface interactions in molecular-sized microporous solids, Chemical Physics Letters, Vol. 137, 1987, pp. 336–340.
[52] Xie, C. X., Zhao, J., Pan, H. F., Ning, S. K., Beta-Zeolite Modified by Phosphorous as FCC Catalyst Additive, Petrochemical Technology, Vol. 31, 2002, pp. 691–695.
[53] Bonetto, L., Camblor, M. A., Corma, A., Pe´rez-Pariente, J., Optimization of zeolite-β in cracking catalysts influence of crystallite size, Applied Catalysis, VOl. 82, 1992, pp. 37–50.
[54] Mavrovouniotis, G. M., Cheng, W. C., Peters, A. W., Role of Hydrogen Transfer in Isobutene—Isobutane Selectivities, ACS Symposium Series, Vol. 571, 1994, pp. 16-24.
[55] Tarighi, S. ZareZadeh-Mehrizi, M.,A review of catalyst and catalyst additives for maximization of propylene in FCC/RFCC process, FarayandNo, Accepted.
[56] AfsharEbrahimia A.,Tarighi, S., A. Bakhshi Ani, A., Experimental and Kinetic Study of Catalytic Cracking of Heavy Fuel Oil over E-CAT/MCM-41 Catalyst1, Kinetics and Catalysis, Vol. 57, 2016, pp. 610–616.
[57] Afshar Ebrahimi,A., Tarighi,S.,  Olefin production from catalytic cracking of light fuel oil over different Additives, Iranian Journal of Catalysis Vol. 5, 2015, pp. 207-212.
[58] Tarighi, S., AfsharEbrahimia A., Physical mixture of MCM-41/ZSM-5 as an activecatalyst component for maximization of propylene in Catalytic cracking of VGO, Petroleum Science and Technology, Vol. 35, 2017, pp. 2158-2163.
[59] Corma, A., and Martı´nez-Triguero, J., The use of MCM-22 as a cracking zeolitic additive for FCC, Journal of Catalysis, Vol. 165, 1997, pp. 102–120.
[60] Castan˜eda, R., Corma, A., Forne´s, V., Martı´nez-Triguero, J., Valencia, S., Direct synthesis of a 9× 10 member ring zeolite (Al-ITQ-13): A highly shape-selective catalyst for catalytic cracking, Journal of Catalysis, Vol. 238, 2006, pp. 79–87.
[61] Haas A., Harding, D. A., Nee, J. R. D., FCC catalysts containing the high-silica faujasites EMO and EMT for gas-oil cracking, Microporous and Mesoporous Materials, Vol. 28, 1999, pp. 325–333.
[62] Corma A., Dı´az-Caban˜as, M. J., Martı´nez-Triguero, J., Rey, F., Rius, J., A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst, Nature, Vol.418, 2002, pp. 514–517.
[63] Corma, A., Martı´nez-Triguero, J., Valencia, S., Benazzi, E., Lacombe, S., IM-5: A highly thermal and hydrothermal shape-selective cracking zeolite, Journal of Catalysis, Vol. 206, 2002, pp 125–133.
[64] Corma, A., Chica ,A., Guil, J. M., Llopis, F. J., Mabilon, G., Perdigo´n-Melo´n, J. A., Valencia, S., ''Determination of the pore topology of zeolite IM-5 by means of catalytic test reactions and hydrocarbon adsorption measurements", Journal of Catalysis, Vol. 189, 2000, pp. 382–394.
[65] Moliner, M., Gonza´lez, J., Portilla, M. T., Willhammar, T., Rey, F., Llopis, F. J., Zou, X., Corma, A., A new aluminosilicate molecular sieve with a system of pores between those of ZSM-5 and beta zeolite, Journal of American Chemical Society,Vol. 133, 2011, pp. 9497–9505.
[66] Moliner, M., Dı´az-Caban˜as, M.J., Forne´s, V., Martı´nez, C., Corma, A., Zeolites and Related Materials: Trends, Targets and Challenges; Proceedings of 4th International FEZA Conference, Studies in Surface Science and Catalysis, part A, 2008, pp. 155–160.
[67] Corma, A., Dı´az-Caban˜as, M. J., Jorda, J. L., Martı´nez, C., Moliner M., High-throughput synthesis and catalytic properties of a molecular sieve with 18-and 10-member rings, Nature, Vol. 443, 2006, pp. 842–845.
[68] Xu, Y., Li, Y., Han, Y., Song, X., Yu, J., A Gallogermanate Zeolite with Eleven‐Membered‐Ring Channels, Angewandte Chemie International Edition,Vol. 52, 2013, pp. 5501–5503.
[69] Willhamar, T., Structural study of zeolites utilizing novel electron crystallographic methods – A voyage into the world of zeolite structures, Doctoral thesis, Stockholm University, Stockholm, 2013.
[70] Dorset, D. L., Weston, S. C., Dhingra, S. S., Crystal structure of zeolite MCM-68: a new three-dimensional framework with large pores, Journal of Physical Chemistry B, Vol. 110, 2006, pp. 2045–2050.
[71] Strohmaier, K. G., Dorset, D. L., Kennedy, G. J., EMM-11, a synthetic crystalline microporous material, its preparation and use, US Pat., 2013, 8545799 B2
[72] Baerlocher, C., Weber, T., McCusker, L. B., Palatinus, L., Zones, S. I., Unraveling the perplexing structure of the zeolite SSZ-57, Science, Vol. 333, 2011, pp. 1134–1137.
[73] Lobo, R. F., Davis, M. E., CIT-1: A new molecular sieve with intersecting pores bounded by 10-and 12-rings, Journal of American Chemical Society, Vol. 117, 1995, pp. 3766–3779.
[74] Lobo, R. F., Pan, M., Chan, I., Li, H. X., Medrud, R. C., Zones, S. I., Crozier, P. A., Davis, M. E., SSZ-26 and SSZ-33: two molecular sieves with intersecting 10-and 12-ring pores, Science, Vol. 262, 1993, pp. 1543–1546.
[75] Burton, A. W., Emm-22 molecular sieve material, its synthesis and use, PCT Patent Application, 2013, WO2013028303 (A1).