گوگردزدایی عمیق از نفتا با استفاده از CMK حاوی نانوذرات فلزی نیکل

نوع مقاله : ترویجی

نویسندگان

1 پژوهشگاه صنعت نفت، تهران، ایران

2 دانشکده شیمی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

چکیده

گوگردزدایی جذبی به کمک مواد مزوحفره کربنی از جمله راهکارهای مناسب برای رسیدن به استانداردهای روز و سخت‌گیرانه بین‌المللی درمورد گوگرد است. در این پژوهش جاذب CMK-3 حاوی نانوذرات نیکل ساخته‌شده و ساختار آن با استفاده از روش‌های XRD، Nitrogen Sorption، SEM، FT-IR شناسایی شد. نتایج به‌دست‌آمده نشان دادند که نانو ساختار CMK-3 شکل‌گرفته و به‌رغم مقدار بالای نیکل، نظم ساختاری حفظ ‌شده و سطح ویژه نمونه‌های سنتزی نیز در حد قابل قبولی حفظ شده است. سپس در مرحله بعد، گوگردزدایی در شرایط مختلفی با استفاده از این نانوجاذب‌ها انجام شد که راندمان جذب این نانوجاذب‌های سنتزی هم در دمای محیط و هم در دمای بالا بسیار خوب بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Desulfurization of Naphta Using CMK Containing Nickel Nanoparticles

نویسندگان [English]

  • Amir Vahid 1
  • maryam mazuchi 2
  • Sahar Baniyaghoob 2
1 Researcher, Research institute of petroleum industry
2 Science and research branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Adsorptive desulfurization using mesoporous carbons are of the preeminent methods to meet serious international standards in case of sulfur. In this research, the absorbent CMK-3 containing nickel nanoparticles was synthesized and characterization using XRD, BET, SEM and FT-IR. The results showed that the nanostructure was formed and the despite high nickel loading, structural order is still preserved and specific surface of the synthesized samples is maintained at an acceptable level. Then, in the next step, the capability of synthesized adsorbent was carried out in various conditions, which shows the significant yield of them in both low and high temperature. In addition, the absorption yield of these nano-adsorbents was preserved after several reduction, indicating the high potential of these adsorbents in desulphurization.

کلیدواژه‌ها [English]

  • Nanotechnology
  • Desulfurization
  • Carbon adsorbents
  • fossil fuels
  • identification
[1]  Foo, K. Y., and B. H. Hameed. "Utilization of biodiesel waste as a renewable resource for activated carbon: application to environmental problems." Renewable and Sustainable Energy Reviews 13.9, 2009, pp. 2495-2504.
[2]  Babich, I. V., and J. A. Moulijn. "Science and technology of novel processes for deep desulfurization of oil refinery streams: a review." Fuel 82.6, 2003, pp. 607-631.
[3] Wauquier, Jean-Pierre. Petroleum Refining: Crude oil, petroleum products, process flowsheets. Vol. 1. Editions Technip, 1995.
[4] Absi-Halabi, M., A. Stanislaus, and K. Al-Dolama. "Performance comparison of alumina-supported Ni-Mo, Ni-W and Ni-Mo-W catalysis in hydrotreating vacuum residue." Fuel 77.7, 1998, pp. 787-790.
[5] Agarwal, Prachi, and D. K. Sharma. "Comparative studies on the bio-desulfurization of crude oil with other desulfurization techniques and deep desulfurization through integrated processes." Energy & Fuels 24.1, 2009, pp. 518-524.
[6] Javadli, Rashad, and Arno De Klerk. "Desulfurization of heavy oil." Applied petrochemical research 1.1-4, 2012, pp. 3-19.
[7] Rana, Mohan S., et al. "A review of recent advances on process technologies for upgrading of heavy oils and residua." Fuel 86.9, 2007, pp. 1216-1231.
[8] Javadli, Rashad, and Arno De Klerk. "Desulfurization of heavy oil." Applied petrochemical research 1.1-4, 2012, pp. 3-19.
[9] Seeberger, Andreas, and Andreas Jess. "Desulfurization of diesel oil by selective oxidation and extraction of sulfur compounds by ionic liquids—a contribution to a competitive process design." Green Chemistry 12.4, 2010, 602-608.
[10] Huang, Chongpin, et al. "Desulfurization of gasoline by extraction with new ionic liquids." Energy & Fuels 18.6, 2004, pp. 1862-1864.
[11] Jian-long, W. A. N. G., et al. "Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids." Journal of fuel chemistry and technology 35.3, 2007, pp. 293-296.
[12] Eßer, Jochen, Peter Wasserscheid, and Andreas Jess. "Deep desulfurization of oil refinery streams by extraction with ionic liquids." Green chemistry 6.7, 2004, 316-322.
[13] Siddiquee, Muhammad Nurunnabi. Autoxidation of Oilsands Bitumen: Applied, Model Compounds and Microfluidic Study. Diss. University of Alberta, 2016.
[14] Pasiuk-Bronikowska, Wanda, Józef Ziajka, and Tadeusz Bronikowski. Autoxidation of sulphur compounds. Ellis Horwood, 1992.
[15] Bolshakov, G. F. "The Effect of organic sulfur compounds on oxidation processes of hydrocarbon fuels." Sulfur Reports 7.5, 1987, 379-392. [12] Jiang X., Li H., Zhu W., He L., Shu H. & Lu J., “Deep desulfurization of fuels catalyzed by surfactant – type decatungstates using H202 as oxidant”, Fuel. Vol. 88, 2009, pp. 431- 436
[16] Attar, Amir, and William H. Corcoran. "Desulfurization of organic sulfur compounds by selective oxidation. 1. Regenerable and nonregenerable oxygen carriers." Industrial & Engineering Chemistry Product Research and Development 17.2, 1978, pp. 102-109.
[17] Ranson, Isora, and Carmen M. Rivas. "Biodesulfurization of hydrocarbons." U.S. Patent No. 6,808,919. 26 Oct. 2004.
[18] Linguist, Larry, and Michael Pacheco. "Enzyme-based diesel desulfurization process offers energy, CO2 advantages." Oil and Gas Journal 97.8, 1999, pp. 45-50.
[19] Soleimani, Mehran, Amarjeet Bassi, and Argyrios Margaritis. "Biodesulfurization of refractory organic sulfur compounds in fossil fuels." Biotechnology advances 25.6, 2007, pp. 570-596.
[20] Davoodi-Dehaghani, Fatemeh, Manouchehr Vosoughi, and Abed Ali Ziaee. "Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain." Bioresource technology 101.3, 2010, pp. 1102-1105.
[21] Salem, Abu Bakr SH. "Naphtha desulfurization by adsorption." Industrial & engineering chemistry research 33.2, 1994, pp. 336-340.
[22] Dubinin, M. M. "Fundamentals of the theory of adsorption in micropores of carbon adsorbents: characteristics of their adsorption properties and microporous structures." Carbon 27.3, 1989, pp. 457-467.
[23] Blanco-Brieva, G., et al. "Removal of refractory organic sulfur compounds in fossil fuels using MOF sorbents." Global Nest J 12.12, 2010, pp. 296-304.
[24] Anbia, Mansoor, and Nourali Mohammadi. "A nanoporous adsorbent for removal of furfural from aqueous solutions." Desalination 249.1, 2009, pp. 150-153.
[25] Mansoori, G. Ali, et al. "Environmental application of nanotechnology." Annual Review of Nano Research 2.2, 2008, pp. 1-73.
[26] Zhoa M.A., Song, “Liquid-phase adsorption of multi-ring thiophene sulfur compounds on carbon materials with different surface properties”, J.Phys. Chem. B. Vol. 110, 2006, pp. 4699-4707
[27] Chen, Fengxi, et al. "Microporosity of SBA-3 mesoporous molecular sieves." Microporous and mesoporous materials 75.3, 2004, pp. 231-235.
[28] Dong, Xiaoping, et al. "A structure of MnO 2 embedded in CMK-3 framework developed by a redox method." Microporous and mesoporous materials 91.1, 2006, pp. 120-127.
[29] Chen, Fengxi, et al. "Microporosity of SBA-3 mesoporous molecular sieves." Microporous and mesoporous materials 75.3, 2004, pp. 231-235.