مطالعه آزمایشگاهی و شبیه‌سازی CFD انتقال حرارت راکتور پرشده تحت تأثیر دیواره: اثر شکل دانه کاتالیستی و حالت قرارگیری آن بر تشکیل نقاط داغ با استفاده از روش تاگوچی

نوع مقاله : ترویجی

نویسندگان

آزمایشگاه دینامیک سیالات محاسباتی، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران

چکیده

در مطالعه حاضر انتقال حرارت تک‌دانه کاتالیستی (استوانه‌ای، استوانه‌ای شیاردار و سه‌پر) به ترتیب با نسبت قطر بستر به قطر دانه (N) 6/7، 5/1، 4/5 در مجاورت دیواره بستر به‌صورت آزمایشگاهی و عددی مطالعه شد. در قسمت عددی به‌منظور حل معادلات مومنتوم، پیوستگی و انرژی از روش اجزای محدود (FEM) استفاده گردید. به‌منظور اعتبارسنجی روش عددی از داده‌های آزمایشگاهی استفاده شد. نتایج نشان داد که سه ناحیه مهم در اطراف دانه وجود دارند: ناحیه سرعت‌پایین در مجاورت دانه، فضای بین دانه و دیواره و فضای پشت دانه. با کاهش فاصله دانه-دیواره تأثیر دیواره بر میزان انتقال حرارت بررسی شد. نتایج نشان داد که دانه استوانه‌ای و استوانه‌ای شیاردار برای 0/143 ≥yc/Dp ایجاد نقطه داغ می‌کنند و زوایای 90=θz و 60=θa بیش‌ترین احتمال ایجاد نقاط داغ را دارند. درنهایت با استفاده از روش تاگوچی به بررسی حالت قرارگیری بهینه دانه در مجاورت دیواره پرداخته شد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Study and CFD Simulation of Heat Transfer Fixed Bed Affected by The wall: Particle Rotation and Location Effects on Hot Spots Creation Using Taguchi Method

نویسندگان [English]

  • Mahdi Zare
  • Seyed Hassan Hashemabadi
Computational Fluid Dynamics (CFD) Research Laboratory, School of Chemical, Petroleum, and Gas Engineering. Iran University of Science and Technology
چکیده [English]

In this study, the heat transfer of a single catalyst particle (cylindrical, sg-cylindrical, and tri-lobe) beside the bed wall was studied experimentally and numerically with the bed to particle diameter ration (N) of 4.5, 5.1, 6.7 respectively. In the numerical section, the Finite Element Method (FEM) was applied to solve the momentum, continuity, and Energy. Experimental data was used to validate the numerical results. The results showed that three are the important area around the catalyst particle: low-velocity fluid around the particle, space between the particle and bed wall, and space behind the particle. The wall effects on the heat transfer were studied by reducing the distance of the particle-bed wall. Results showed that cylindrical and sg-cylindrical particles face hot-spot for yc/Dp≤0.143 and θa=60 and θz=90 degrees are the highest probable degrees for hot-spot creation. Finally, the Taguchi method was used to find the optimized particle location around the bed wall.

کلیدواژه‌ها [English]

  • Cylindrical
  • Sg-Cylindrical
  • Tri-Lobe
  • Heat Transfer
  • Packed Bed
  • Computational Fluid Dynamics
  • Wall Effects
  • Hot-Spot
  • Taguchi
[1] T. Fronts, Patterns in Catalytic Systems Luss, Dan, Industrial & Engineering Chemistry Research 36 (1997) 2931-2944.
[2] M. Sheintuch, S. Shvartsman, Spatiotemporal patterns in catalytic reactors, AIChE journal 42 (1996) 1041-1068.
[3] R. Henda, K. Alhumaizi, Spatiotemporal patterns in a two-dimensional reaction-diffusion-convection system: Effect of transport parameters, Mathematical and Computer Modelling 36 (2002) 1361-1373.
[4] C.H. Bartholomew, R.J. Farrauto, Fundamentals of industrial catalytic processes, John Wiley & Sons2011.
[5] J.P. Sørensen, W.E. Stewart, Computation of forced convection in slow flow through ducts and packed beds—II velocity profile in a simple cubic array of spheres, Chemical Engineering Science 29 (1974) 819-825.
[6] T.F. McKenna, R. Spitz, D. Cokljat, Heat transfer from catalysts with computational fluid dynamics, AIChE Journal 45 (1999) 2392-2410.
[7] M. Dalman, J. Merkin, C. McGreavy, Fluid flow and heat transfer past two spheres in a cylindrical tube, Computers & fluids 14 (1986) 267-281.
[8] M. Nijemeisland, A.G. Dixon, Comparison of CFD simulations to experiment for convective heat transfer in a gas–solid fixed bed, Chemical Engineering Journal 82 (2001) 231-246.
[9] G. Aparicio-Mauricio, R.S. Ruiz, F. López-Isunza, C.O. Castillo-Araiza, A simple approach to describe hydrodynamics and its effect on heat and mass transport in an industrial wall-cooled fixed bed catalytic reactor: ODH of ethane on a MoVNbTeO formulation, Chemical Engineering Journal 321 (2017) 584-599.
[10] Y. Dong, B. Sosna, O. Korup, F. Rosowski, R. Horn, Investigation of radial heat transfer in a fixed-bed reactor: CFD simulations and profile measurements, Chemical Engineering Journal 317 (2017) 204-214.
[11] S.A. Logtenberg, A.G. Dixon, Computational fluid dynamics studies of fixed bed heat transfer.
[12] B. Partopour, A.G. Dixon, N‐butane partial oxidation in a fixed bed: A resolved particle computational fluid dynamics simulation, The Canadian Journal of Chemical Engineering (2018).
[13] M. Zhang, H. Dong, Z. Geng, Computational study of flow and heat transfer in fixed beds with cylindrical particles for low tube to particle diameter ratios, Chemical Engineering Research and Design 132 (2018) 149-161.
[14] T. Eppinger, K. Seidler, M. Kraume, DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios, Chemical Engineering Journal 166 (2011) 324-331.
[15] H.P.A. Calis, J. Nijenhuis, B.C. Paikert, F.M. Dautzenberg, C.M. van den Bleek, CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing, Chemical Engineering Science 56 (2001) 1713-1720.
[16] R.K. Reddy, J.B. Joshi, CFD modeling of pressure drop and drag coefficient in fixed beds: Wall effects, Particuology 8 (2010) 37-43.
[17] T. Atmakidis, E.Y. Kenig, CFD-based analysis of the wall effect on the pressure drop in packed beds with moderate tube/particle diameter ratios in the laminar flow regime, Chemical Engineering Journal 155 (2009) 404-410.
[18] S.J.P. Romkes, F.M. Dautzenberg, C.M. van den Bleek, H.P.A. Calis, CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio, Chemical Engineering Journal 96 (2003) 3-13.
[19] A.G. Dixon, M. Nijemeisland, E.H. Stitt, Systematic mesh development for 3D CFD simulation of fixed beds: Contact points study, Computers & Chemical Engineering 48 (2013) 135-153.
[20] A.G. Dixon, M.E. Taskin, M. Nijemeisland, E.H. Stitt, Wall-to-particle heat transfer in steam reformer tubes: CFD comparison of catalyst particles, Chemical Engineering Science 63 (2008) 2219-2224.
[21] A. Singhal, S. Cloete, S. Radl, R. Quinta-Ferreira, S. Amini, Heat transfer to a gas from densely packed beds of cylindrical particles, Chemical Engineering Science 172 (2017) 1-12.
[22] A.G. Dixon, M. Ertan Taskin, M. Nijemeisland, E.H. Stitt, Systematic mesh development for 3D CFD simulation of fixed beds: Single sphere study, Computers & Chemical Engineering 35 (2011) 1171-1185.
[23] A.G. Dixon, M. Nijemeisland, CFD as a design tool for fixed-bed reactors, Industrial & Engineering Chemistry Research 40 (2001) 5246-5254.
[24] A.G. Dixon, M. Nijemeisland, E.H. Stitt, CFD study of heat transfer near and at the wall of a fixed bed reactor tube: Effect of wall conduction, Industrial & engineering chemistry research 44 (2005) 6342-6353.
[25] F.S. Mirhashemi, S.H. Hashemabadi, S. Noroozi, CFD simulation and experimental validation for wall effects on heat transfer of finite cylindrical catalyst, International Communications in Heat and Mass Transfer 38 (2011) 1148-1155.
 [26] A.H. Ahmadi Motlagh, S.H. Hashemabadi, 3D CFD simulation and experimental validation of particle-to-fluid heat transfer in a randomly packed bed of cylindrical particles, International Communications in Heat and Mass Transfer 35 (2008) 1183-1189.
 [27] A.H. Ahmadi Motlagh, S.H. Hashemabadi, CFD based evaluation of heat transfer coefficient from cylindrical particles, International Communications in Heat and Mass Transfer 35 (2008) 674-680.
[28] F.S. Mirhashemi, S.H. Hashemabadi, Experimental and CFD study of wall effects on orderly stacked cylindrical particles heat transfer in a tube channel, International Communications in Heat and Mass Transfer 39 (2012) 449-455.
 [29] M. Zare, S.H. Hashemabadi, Experimental study and CFD simulation of wall effects on heat transfer of an extrudate multi-lobe particle, International Communications in Heat and Mass Transfer 43 (2013) 122-130.
[30] R. Zou, A. Yu, The packing of spheres in a cylindrical container: the thickness effect, Chemical Engineering Science 50 (1995) 1504-1507.
[31] Y. Matros, Unsteady processes in catalytic reactors, (1985).
[32] S.B. Jaffe, Hot spot simulation in commercial hydrogenation processes, Industrial & Engineering Chemistry Process Design and Development 15 (1976) 410-416.
[33] A. Benneker, A.E. Kronberg, K. Westerterp, Influence of buoyancy forces on the flow of gases through packed beds at elevated pressures, AIChE journal 44 (1998) 263-270.
[34] D. Nguyen, V. Balakotaiah, Flow maldistributions and hot spots in down-flow packed bed reactors, Chemical engineering science 49 (1994) 5489-5505.
[35] O. Korup, S. Mavlyankariev, M. Geske, C.F. Goldsmith, R. Horn, Measurement and analysis of spatial reactor profiles in high temperature catalysis research, Chemical Engineering and Processing: Process Intensification 50 (2011) 998-1009.
[36] O. Bilous, N.R. Amundson, Chemical reactor stability and sensitivity: II. Effect of parameters on sensitivity of empty tubular reactors, AIChE Journal 2 (1956) 117-126.
 [37] S.J. Park, J.W. Bae, Y.J. Lee, K.S. Ha, K.W. Jun, P. Karandikar, Deactivation behaviors of Pt or Ru promoted Co/P-Al2O3 catalysts during slurry-phase Fischer–Tropsch synthesis, Catalysis Communications 12 (2011) 539-543.
[38] H. Aligolzadeh, A. Jebreili Jolodar, R. Mohammadikhah, CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis, Cogent Engineering 2 (2015).
[39] C. Bendjaouahdou, M.H. Bendjaouahdou, Control of the hot spot temperature in an industrial SO2 converter, Energy Procedia 36 (2013) 428-443.
 [40] C. Barkelew, B. Gambhir, Stability of trickle-bed reactors, ACS symposium series, Oxford University Press, 1984, pp. 61-81.
[41] E. Wicke, H. Onken, Periodicity and chaos in a catalytic packed bed reactor for CO oxidation, Tenth International Symposium on Chemical Reaction Engineering, Elsevier, 1988, pp. 2289-2294.
[42] E. Wicke, H. Onken, Bifurcation, periodicity and chaos by thermal effects in heterogeneous catalysis, From Chemical to Biological Organization, Springer1988, pp. 68-82.
[43] G. Boreskov, Y. Matros, O. Klenov, V. Logovkoi, V. Lakhmostov, Local nonuniformities in a catalyst bed, Dokl. Akad. Nauk SSSR, 1981, pp. 1418.
[44] K.M. Ng, R. Gani, K. Dam-Johansen, Chemical product design: towards a perspective through case studies, Elsevier2006.