بررسی افزایش مقیاس ستون‌های تقطیر واکنشی

نوع مقاله : مروری

نویسندگان

1 استاد گروه مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان

2 دانشجوی دکتری مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان

چکیده

راه‌اندازی ستون‌های پایلوت به‌عنوان پیش‌زمینه طراحی فرایندها در مقیاس صنعتی از دیرباز موردتوجه بوده است. باوجود مزایای متعدد، ستون‌های تقطیر واکنشی پایلوت معدودی راه‌اندازی شده است. بررسی مطالعات انجام شده و واکنش‌های مشابه مشخص گردید که تقطیر واکنشی برای واکنش‌های استری شدن، استری شدن چندمرحله‌ای، تولید ترکیبات اتری، آلکیل‌دار کردن، رطوبت‌زدایی، استیل‌دار کردن و ایزومردار کردن می‌تواند کاربرد داشته باشد. تطابق ناحیه دمایی بهینه برای انجام واکنش شیمیایی مدنظر با ناحیه دمایی عملیاتی ستون تقطیر یکی از پارامترهای کلیدی در طراحی فرایند تقطیر واکنشی است. از طرفی یکی از مهم‌ترین پیش‌شرط‌های اجرای فرایند، بررسی نقاط هم‌جوشی واکنشی است. قطر ستون‌های پایلوت مورد استفاده در غالب تحقیق‌ها 50 میلی‌متر گزارش شده است. ارتفاع ستون‌ها با توجه به نوع فرایند و سختی جداسازی متفاوت است. آکنه‌های ساختاریافته کاتالیستی Sulzer بیش‌ترین کاربرد را در این ستون‌ها داشته‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Scale up in Reactive Distillation Columns

نویسندگان [English]

  • Mortaza Zivdar 1
  • Yahya Balouchi 2
1 Professor of Chemical Engineering, Dept. of Chemical Eng., University of Sistan and Baluchestan, Zahedan, Iran
2 Ph.D. Student of Chemical Engineering, Dept. of Chemical Eng., University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

The design and operation of pilot columns have long been considered as a prerequisite for the design of industrial-scale processes. Despite the obvious benefits, a few reactive distillation pilot plants have been set up. Researches have been shown that reactions such as esterification, transesterification, etherification, alkylation, dehumidification, acetylation and isomerization are best suited in reactive distillation columns. In general, the adaptation of the optimal temperature zone for the chemical reaction is the key parameter in designing reactive distillation columns. On the other hand, one of the most important preconditions for the implementation of these processes is the study of reactive azeotrope points. The diameter of the pilot columns used in most studies is 50 mm and the height of the columns varies according to the type of the process. Sulzer catalytic structured packing has been used mostly in these columns.

کلیدواژه‌ها [English]

  • Pilot Plants
  • Reactive distillation
  • Scale Up
  • Structured Packings
[1] Jan Harmsen, G., Reactive distillation: The front-runner of industrial process intensification: A full review of commercial applications, research, scale-up, design and operation.Chemical Engineering and Processing, Vol.46, 2007, pp. 774-780.
[2] R.Taylor., R. Krishna., Modelling reactive distillation, Chemical Engineering Science, Vol.55, 2000, pp. 5183-5229.
[3] Hoffmann, Achim, Noeres, Christoph, Górak, Andrzej, Scale-up of reactive distillation columns with catalytic packings.Chemical Engineering and Processing, Vol.43, 2004, pp. 383-395.
[4] Shah. Mayank, A.Kiss Anton., Zondervan, Edwin, B. de Haan, Andre, Pilot-scale experimental validation of unsaturated polyesters synthesis by reactive distillation. Chemical Engineering Journal, Vol.213, 2012, pp. 175-185.
[5] Niesbach, A, Daniels, J, Schroter, B, Lutze, P, Gorak, A, The inhibition of acrylic acid and acrylate ester polymerization in a heterogeneously catalyzed pilot-scale reactive distillation column. Chemical Engineering Science, Vol.88, 2013, pp. 95-107.
[6] González, Daniel R., Bastidas, Paola, Rodríguez, Gerardo, Gil, Iván, Design alternatives and control performance in thepilot scale production of isoamyl acetate viareactive distillation. Chemical Engineering Research and Design, Vol.123, 2017, pp. 347-359.
[7] Cruz-Diaz, Martin., Buchaly, Carstens., Kreis, Peter., Perez-Cisneros, Eduardo S., Lobo-Oehmichen, Ricardo., Gorak, Andrzej., Synthesis of n-propyl propionate in a pilot-plant reactive distillation column:Experimental study and simulation. Computers and Chemical Engineering, Vol.39, 2012, pp. 118-128.
[8] Wierschem, Matthias., Schlimper, Stefan., Heils, Rene., Smirnova, Irina., A. Kiss, Anton., Skiborowski, Mirko., Lutze, Philip., Pilot-scale validation of Enzymatic Reactive Distillation for butyl butyrate production, Chemical Engineering Journal, Vol.312, 2017, pp. 106-117.
[9] Rasmussen, Jess Bjorn, Mansouri, Seyed Soheil., Zhang, Xiangping, Abildskov, Jens, Huusom, Kjøbsted Jakob., Analysing separation and reaction stage performance in a reactive cyclic distillation process.Chemical Engineering and Processing - Process Intensification, Vol.167, 2021, 108515.
[10] Gao, Xin., Yan, Peng., Ma, Xiaohua., Zhao, Zhenyu., Li, Hong., Li, Xingang., Design of distillation reactor with novel catalysts distribution pattern for namyl acetate synthesis in industrial scale. Fuel, Vol.280, 2020, 118604.
[11] Wang, San-Jang., Wong, David Shan-Hill., Lee, En-Ko., Design and Control of a Reactive Distillation Process for Synthesizing Propylene Carbonate from Indirect Alcoholysis of Urea. IFAC PapersOnline 51-89, 2018, pp. 333-338.
[12] Egger, Torben., Egger, Lisa S., Fieg, Georg., Scale and causes of catalyst activity loss in enzymatic catalyzed reactive distillation. Chemical Engineering Science, Vol.178, 2018, pp. 324-334.
[13] Beckmann, Andreas., Nierlich, Franz., Popken,Tim., Reusch, Dieter., von Scala, Claudia., Tuchlenski, Axel., Industrial experience in the scale-up of reactive distillation with examples from C4-chemistry. Chemical Engineering Science, Vol.57, 2002, pp. 1525-1530.
[14] Hu, Xutao., Cheng, Hongye., Kang, Xueqing., Chen, Lifang., Yuan, Xigang., Qi, Zhiwen., Analysis of direct synthesis of dimethyl carbonate from methanol and CO2 intensified by in-situ hydration-assisted reactive distillation with side reactor. Chemical Engineering & Processing: Process Intensification, Vol.129, 2018, pp. 109-117.
[15] Tsatse, A., Oudenhoven, S.R.G., Kate, A.J.B. ten., Sorensen, E., Optimal design and operation of reactive distillation systems based on a superstructure methodology. Chemical Engineering Research and Design, Vol 170, 2021, pp. 107-133
[16] Shen, Yuanyuan., Zhao, Qing., Li, Huiyuan., Liu, Xingyi., Chen, Zhengrun., Zhu, Zhaoyou., Cui, Peizhe., Ma, Yixin., Wang, Yinglong., Design and optimization of reactive dividing-wall extractive distillation process for dimethyl carbonate synthesis based on quantum chemistry and molecular dynamics calculation. Separation and Purification Technology, Vol.273, 2021, 118978.
[17] Fernandez, Mayra F., Barroso, Benoît., Meyer, Xuân-Mi., Meyer, Michel., Le Lann, Marie-Véronique., Le Roux, Galo C., Brehelin, Mathias., Experiments and dynamic modeling of a reactive distillation column for the production of ethyl acetate by considering the heterogeneous catalyst pilot complexities. Chemical Engineering Research and Design, Vol.91, 2013, pp. 2309-2322.
[18] Holtbruegge, Johannes, Heile, Sebastian, Lutze, Philip, Gorak, Andrzej, Synthesis of dimethyl carbonate and propylene glycol in a pilot-scale reactive distillation column: Experimental investigation, modeling and process analysis. Chemical Engineering Journal, Vol.234, 2013, pp. 448-463.
[19] Altman, E., Kreis, P., Van Gerven, T., Stefanidis, G.D., Stankiewicz, A, Gorak, A., Pilot plant synthesis of n-propyl propionate via reactive distillation with decanter separator for reactant recovery: Experimental model validation and simulation studies. Chemical Engineering and Processing: Process Intensification, Vol.49, 2010, pp. 965-972.
[20] Li, Xingang., Wang, Rui., Yan, Yutao., Zhao, Runnan., Li, Hong., Gao, Xin., Ethylene Glycol Recovery from 2‑Ethyl-1,3-dioxolane Hydrolysis via Reactive Distillation: Pilot-Scale Experiments and Process Analysis. Industrial & Engineering Chemistry Research, Vol.58, 2019, pp. 20746-20757.
[21] Keller, Tobias., Holtbruegge, Johannes., Gorak, Andrzej., Transesterification of dimethyl carbonate with ethanol in a pilot-scale reactive distillation column. Chemical Engineering Journal, Vol.180, 2012, pp. 309-322.
[22] Li, Xingang., Zhao, Runnan., Li, Hong., Gao, Xin., Cong, Haifeng., Na, Jian., Shi, Yang., Reactive distillation toward eco-efficient process of continuous biodiesel manufacture from waste oil: Pilot-scale experiments and process design, Industrial & Engineering Chemistry Research, Vol.59, 2020, pp. 14935-14946.
[23] Lopez-Ramırez, Maria Dolores., Omar Barroso-Munoz, Fabricio., Cabrera-Ruiz, Julian., Segovia-Hernandez, Juan Gabriel., Hernandez-Escoto, H ector., Hernandez, Salvador., Some Insights in Experimental Studies on the Start-up Operation of a Reactive Dividing Wall Column, Chemical Engineering and Processing - Process Intensification. Vol.159, 2020, 108211.
[24] Steinigeweg, Sven., Gmehling, Jurgen., n-Butyl Acetate Synthesis via Reactive Distillation: Thermodynamic Aspects, Reaction Kinetics, Pilot-Plant Experiments, and Simulation Studies. Industrial & engineering chemistry research, Vol.41, 2002, pp. 5483-5490.
[25] Holtbruegge, Johannes., Wierschem, Matthias., Lutze, Philip., Synthesis of dimethyl carbonate and propylene glycol in a membrane-assisted reactive distillation process: Pilot-scale experiments, modeling and process analysis, Chemical Engineering and Processing: Process Intensification, Vol.84, 2014, pp. 54-70.
[26] Santaella, Miguel A., Orjuela, Alvaro., Suaza, Andrea., Rivera, Jose L., Martínez, Andrés F., Rodríguez, Gerardo., Tributyl Citrate Production via Reactive Distillation-Conceptual design and pilot scale validation, Industrial & Engineering Chemistry Research,Vol.59, 2020, pp. 10583–10594.
[27] Y. Fang, W. Xiao., Experimental and modeling studies on a homogeneous reactive distillation system for dimethyl carbonate synthesis by transesterification, Separation and Purification Technology, Vol.34, 2004, pp. 255–263.
[28] Y. Fang, D. Li‌u., A reactive distillation process for an azeotropic reaction system: transesterification of ethylene carbonate with methanol. Chemical Engineering Communications, Vol.194, 2007, pp. 1608–1622.
[29] Wang, Hongqi., Liu, Yurong., Zhang, Lei., Gunawan, Richard., Wang, Zhitao., Li, Chun-Zhu., Enrichment of aromatic compounds during the high-pressure reactive distillation of bio-oil. Fuel Processing Technology, Vol.220, 2021, 106897
[30] Fair J., Seibert F., Behrens M., Saraber P. and Olujic Z. Structured packing performance - experimental evaluation of two predictive models. Industrial and Engineering Chemistry Research Vol.39, 2000, pp. 1788–1796.
[31] Mazarei Sotoodeh, Maryam., Zivdar,Morteza.,Rahimi, Rahbar., CFD Simulation of Dry and Wet Pressure Drops and Flow Pattern in Catalytic Structured Packings. Journal of Chemical and Petroleum Engineering, Vol.51, 2017, pp. 27-37
[32] https://www.sulzer.com
[33] Aijaz, Tahmeed., Reactive Distillation. Saarbrücken LAP LAMBERT Academic Publishing, 2014