گوگردزدایی اکسایشی از میعانات گازی با استفاده از نانوکاتالیست سولفید مولیبدن بر پایه اکسید گرافن

نوع مقاله : پژوهشی

نویسندگان

1 دکتری شیمی کاربردی/ دانشکده شیمی/ دانشگاه تهران، تهران، ایران

2 دکتری مهندسی شیمی/ استاد، مرکز نانوفناروی و کربن پژوهشگاه صنعت نفت، تهران، ایران

چکیده

در این پژوهش، نانوکاتالیست سولفید مولیبدن بر پایه اکسید گرافن (MoS2/GO) به روش اولتراسونیک سنتز شد و برای گوگردزدایی اکسایشی از میعانات گازی با میزان گوگرد اولیه ۲۸۵۰ppm  به کار گرفته شد. نانوکاتالیست با استفاده از آنالیزهای ویژگی‌سنجی XRD, BET, TPD, XPS، اسپکتروسکوپی رامان و آزمون راکتوری مورد ارزیابی قرار گرفت. نتایج نشان داد که نانوکاتالیست M9-GO با میزان 9 درصد وزنی فلز مولیبدن، میزان راندمان گوگردزدایی از میعانات گازی به میزان 98 درصد در شرایط عملیاتی (دمای 75 درجه سانتی‌گراد، میزان اکسنده %.3wt و مدت‌زمان 90 دقیقه و به کمک حلال استونیتریل) حاصل شد. همچنین کاتالیست  M9-GOبعد از 9 مرتبه، بازیابی بعد از واکنش استخراج-اکسایش، فعالیت و پایداری خوبی نشان داد. اثر مساحت سطح، قطر حفرات و اسیدیته کاتالیست‌ها بر عملکرد فعالیت گوگردزدایی اکسایشی نیز بررسی شد و نتایج نشان داد که هرچه میزان مساحت سطح، تخلخل و اسیدیته کاتالیست بیش‌تر باشد راندمان فرایند گوگردزدایی اکسایشی ارتقا می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Oxidative Desulfurization of Gas Condensate Using Graphene Oxide Supported Molybdenum Sulfide Nanocatalyst

نویسندگان [English]

  • Zohal Safaei 1
  • Alimorad rashidi 2
1 School of Chemistry, College of Science, University of Tehran, Tehran, Iran
2 Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran
چکیده [English]

In this study, molybdenum sulfide nanocatalyst supported graphene oxide was synthesized by ultrasonic method and was used for oxidative desulfurization of gas condensate with initial sulfur content of 2850 ppm. The nanocatalyst was evaluated using XRD, BET, TPD, XPS, Raman spectroscopy and reactor tests. The results showed that M9-GOnanocatalyst with 9%by weight of molybdenum metal, 98% desulfurization yield of gas condensate in operation conditions (7500C, oxidative agent 3%, and reaction time 90 min with acetonitrile solvent) was obtained.  M9-GO catalyst also showed good activity and stability after nine step, recovery after extraction-oxidation reaction. Also, the effect of surface area, pore diameter and catalyst acidity on the performance of oxidative desulfurization activity has been investigated. The results showed that the higher the surface area, porosity, and catalyst acidity, the higher the efficiency of oxidative desulfurization process.

کلیدواژه‌ها [English]

  • Gas condensate
  • Oxidative desulfurization
  • MOS2
  • Graphene oxide
[1] Kouravand S., Kermani A.,Clean power production by simultaneous reduction of NOx and SOx contaminants using Mazut Nano-Emulsion and wet flue gas desulfurization. J Clean Prod Vol. 201, 2018, pp. 229-235.
[2] Liu X., Li X., Yan Z., Facile route to prepare bimodal mesoporous γ-Al2O3 as support for highly active CoMo-based hydrodesulfurization catalyst, Journal of Appl Catal B Environ, Vol. 121, 2012, pp. 50-56.
[3] Tanimu A., Alhooshani K., Advanced Hydrodesulfurization Catalysts: A Review of Design and Synthesis. Energy and Fuels. Vol.33, 2019, pp. 2810–38.
[4] Yu Shi., Gang Wang., Jinlin Mei., Chengkun Xiao., Di Hu., Aocheng Wang., Yidong Song YN., Guiyuan Jiang and AD. The Influence of Pore Structure and Acidity on the Hydrodesulfurization of Dibenzothiophene over NiMo-Supported Catalysts.pdf. ACS Omega Vol.5, 2020, pp. 15576−15585.
[5] Bataille F., Lemberton JL., Michaud P., Pérot G., Vrinat M., Lemaire M, et al. Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism. J Catal, Vol.191, 2000, pp. 409–22.
[6] Rashidi F., Sasaki T., Rashidi A.M., Nemati Kharat A. JKJ. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity. J Catal, Vol.299, 2013, pp.321–335.
[7] Hajjar Z., Kazemeini M., Rashidi A., Bazmi M., Graphene based catalysts for deep hydrodesulfurization of naphtha and diesel fuels: A physiochemical study. Fuel, Vol.165, 2016, pp. 468–76.
[8] Xu J, Guo Y, Huang T, Fan Y. Hexamethonium bromide-assisted synthesis of CoMo/graphene catalysts for selective hydrodesulfurization. Appl Catal B Environ, Vol. 244, 2019, pp.385–395.
[9] Soltanali S., Mohaddecy SRS., Mashayekhi M., Rashidzadeh M., Catalytic upgrading of heavy naphtha to gasoline: Simultaneous operation of reforming and desulfurization in the absence of hydrogen. J Environ Chem Eng, Vol.8, 2020, pp.1045-1049.
[10] Mahmoudabadi ZS., Tavasoli A., Rashidi A., Esrafili M., Catalytic activity of synthesized 2D MoS2/graphene nanohybrids for the hydrodesulfurization of SRLGO: experimental and DFT study. Environ Sci Pollut Res, Vol. 28, 2021, pp. 5978–90.
[11] Dan Sun., Delai Ye., Ping Liu., Yougen Tang., Jun Guo LW., Wang and H. MoS2/Graphene Nanosheets from Commercial Bulky MoS2 and Graphite as Anode Materials for High Rate Sodium-Ion Batteries. Adv Energy Mater, Vol. 8, 2017, pp. 17023-83.
[12] Ning Liu., Xuzhen Wang., Wenya Xu., Han Hu., Jingjing Liang JQ., Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel, Vol. 119, 2014, pp. 163–169.
[13] M. LSBLAM., Bieloshapka MBMJZPJI., Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectros Relat Phenomena, Vol. 195, 2014, pp. 145–54.
[14] Yu Jing., Edwin O., Ortiz-Quiles a., Carlos R. Cabrera., Zhongfang Chen., Zhou Z., Layer-by-Layer Hybrids of MoS2 and Reduced Graphene Oxide for Lithium Ion Batteries. Electrochim Acta., Vol. 147, 2014, pp. 392–400.
[15] Changgu Lee., Hugen Yan., Louis E. Brus., Tony F. Heinz., James Hone and SR. Anomalous Lattice Vibrations of Singleand Few-Layer MoS2. ACS Nano, Vol.4, 2010, pp. 2695–700.
[16] Akhavan O., The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets, Carbon N Y, Vol.48, 2010, pp. 509– 519.
[17] Z.S. Mahmoudabadi., A. Rashidi., A. Tavasoli., M. Esrafili., M. Panahi., M. Askarieh., S. Khodabakhshi., Ultrasonication-assisted synthesis of 2D porous MoS2/GO nanocomposite catalysts as high-performance hydrodesulfurization catalysts of vacuum gasoil: Experimental and DFT study, Ultrason. Sonochem. Vol.74, 2021, pp. 1055-58.
[18] Hossain MN., Park HC., Choi HS., A comprehensive review on catalytic oxidative desulfurization of liquid fuel oil. Catalysts, Vol.9, 2019, pp.229-235.
[19] Ma C., Dai B., Liu P., Zhou N., Shi A., Ban L., et al. Deep oxidative desulfurization of model fuel using ozone generated by dielectric barrier discharge plasma combined with ionic liquid extraction. J Ind Eng Chem, Vol.20, 2014, pp. 2769–74.
[20] Li X., Qi H., Zhou W., Xu W., Sun Y. Efficient catalytic performance of tetra-alkyl orthotitanates for the oxidative desulfurization of dibenzothiophene at room temperature. Comptes Rendus Chim, Vol.22, 2019, pp. 321–6.
[21] Vallés-García C., Santiago-Portillo A., Álvaro M., Navalón S., García H. MIL-101 (Cr)-NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes. Appl Catal A Gen, Vol.590, 2020, pp. 117340-48.
[22] S. W. Li., J.-R. Li., Y. Gao., L.-L. Liang., R.-L. Zhang., J. Zhao, Metal modified heteropolyacid incorporated into porous materials for a highly oxidative desulfurization of DBT under molecular oxygen, Journal of Fuel, Vol.197, 2017, pp. 551–561.
[23] C. Yang., K. Zhao., Y. Cheng., G. Zeng., M. Zhang., J. Shao., L. Lu., Catalytic oxidative desulfurization of BT and DBT from n-octane using cyclohexanone peroxide and catalyst of molybdenum supported on 4A molecular sieve, Sep. Purif. Technol. Vol.163, 2016, pp. 153–161.
[24] D. Bunthid., P. Prasassarakich., N. Hinchiranan., Oxidative desulfurization of tire pyrolysis naphtha in formic acid/H2O2/pyrolysis char system, Fuel. Vol.89, 2010, pp. 2617–2622.
[25] M. Te, C. Fairbridge., Z. Ring., Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems, Appl. Catal. A Gen. Vol.219, 2001, pp. 267–280.
[26] H. Mirhoseini., M. Taghdiri., Extractive oxidation desulfurization of sulfur-containing model fuel using hexamine–phosphotungstate hybrid as effective heterogeneous catalyst, Fuel. Vol.167, 2016, pp. 60–67.
[27] K. Chen., N. Liu., M. Zhang., D. Wang., Oxidative desulfurization of dibenzothiophene over monoclinic VO2 phase-transition catalysts, Appl. Catal. B Environ. Vol.212, 2017, pp. 32–40.
[28] M. Shi., D. Zhang., X. Yu., Y. Li., X. Wang., W. Yang., Deep oxidative desulfurization catalyzed by (NH4)5H6PV8Mo4O40 using molecular oxygen as an oxidant, Fuel Processing Technology, Vol.160, 2017, pp. 136-142.
[29] S. Wei., H. He., Y. Cheng., C. Yang., G. Zeng., L. Kang., H. Qian., C. Zhu., Preparation, characterization, and catalytic performances of cobalt catalysts supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene, Fuel, Vol.200, 2017, pp. 11-21.
[30] J. Liu., Z. Zeng., X. Cao., G. Lu., L.H. Wang., Q.L. Fan., W. Huang., H. Zhang., Preparation of MoS2‐Polyvinylpyrrolidone Nanocomposites for Flexible Nonvolatile Rewritable Memory Devices with Reduced Graphene Oxide Electrodes, Small, Vol.8, 2012, pp.3517-3522.
[31] L. Ding., Y. Zheng., Z. Zhang., Z. Ring., J. Chen., Hydrotreating of light cycled oil using WNi/Al2O3 catalysts containing zeolite beta and/or chemically treated zeolite Y, Journal of Catalysis,Vol.241, 2006, pp. 435-445.
[32] Kim T-H., Jeon EK., Ko Y., Jang BY., Kim B-S., Song H-K., Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast. J Mater Chem A, Vol.2, 2014, pp. 7600–5.
[33] Li H., Zhang Q., Yap CCR., Tay BK., Edwin THT., Olivier A., et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater, Vol.22, 2012, pp. 1385–90.
[34] Struchkov NS., Kondrashov VA., Rozanov RY., Nevolin VK., Research and development of the method of graphene oxide thin films local reduction by modulated laser irradiation. J. Phys. Conf. Ser, Vol.816, 2017, pp. 1201-4.
[35] Kondekar NP., Boebinger MG., Woods E V., McDowell MT. In situ XPS investigation of transformations at crystallographically oriented MoS2 interfaces. ACS Appl Mater Interfaces, Vol.9, 2017, pp. 32394–404.
[36] Baker MA., Gilmore R., Lenardi C., Gissler W., XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl Surf Sci, Vol.150, 1999, pp. 255–62.
[37] Mahmoudabadi ZS., Rashidi A., Yousefi M., Synthesis of 2D-porous MoS2 as a nanocatalyst for oxidative desulfurization of sour gas condensate: Process parameters optimization based on the Levenberg–Marquardt algorithm. J Environ Chem Eng, Vol.9, 2021, pp. 105200-7.
[38] S.I. Kim., S.I. Woo., Effect of sulfiding temperatures on the formation of sulfides of Mo/Al2O3 and CoMo/Al2O3, Applied catalysis, Vol.74, 1991, pp. 109-123.
[39] G. McGarvey., S. Kasztelan., An investigation of the reduction behavior of MoS2/Al2O3 and the subsequent detection of hydrogen on the surface, Journal of Catalysis, Vol.148, 1994, pp. 149-156.
[40] B. Scheffer., N. Dekker., P. Mangnus., J. Moulijn., A temperature-programmed reduction study of sulfided CoMo/Al2O3 hydrodesulfurization catalysts, Journal of Catalysis, Vol.121, 1990, pp. 31-46.