تعیین شرایط ایمن سایشی در زانویی‌های واحد نمک‌زدایی واحد پالایشگاهی

نوع مقاله : ترویجی

نویسنده

استادیار، گروه مهندسی شیمی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

چکیده

سایش در اثر انتقال ذرات ریز در جریان سیال مانند خطوط انتقال نفت و گاز اتفاق می‌افتد که می‌تواند منجر به آسیب­های جدی به آن­ها گردد. در این مطالعه، پدیده سایش با استفاده از نرم‌افزار کامسول مدل‌سازی شده است. از سه مدل پرکاربرد صنعتی با نام­های فینی، دی ان وی و ای سی آر سی، در جریان آشفته سیال استفاده شده است. اثر پارامترهای سرعت سیال شامل مقادیر 5، 10 و  20m/s، قطر ذرات جامد شامل مقادیر 120، 170 و 220 میکرون و دبی شن تزریقی شامل مقادیر 0/3، 0/6 و  0/9kg/h بر روی میزان سایش در زانویی مورد بررسی قرار گرفته است. در هر سه مدل ناحیه‌ای در بخش شعاع خارجی زانویی به‌عنوان ناحیه مستعد بیش‌ترین میزان خوردگی نشان می‌دهند. نتایج نشان می‌دهند که با افزایش سرعت سیال، قطر ذرات جامد و همچنین دبی تزریق ذرات جامد، میزان سایش در زانویی افزایش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of Safe Erosion Conditions in the Elbows of a Desalination Unit of a Refinery

نویسنده [English]

  • Abolhasan Ameri
Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
چکیده [English]

Erosion occurs due to the transportation of very fine particles in fluid flow such as oil and gas pipelines, which could lead to serious damage to them. In this study, erosion phenomena is modeled using the COMSOL software. Three applied industrial models, namely Finnie, DNV and ECRC in turbulent fluid flow have been applied. The effects of fluid velocity including 5, 10 and 20 m/s, solid particles diameter including 120, 170 and 220 microns, and injecting sand flow rates including 0.3, 0.6 and 0.9 kg/h on the amount of erosion have been investigated. The three models show almost the same area in the external radius section of the elbow, as the region of most susceptible to erosion. The results show that increasing the fluid velocity, solid particles diameter and injection flow rate of solid particle boosts the erosion at the elbows.

کلیدواژه‌ها [English]

  • Erosion
  • Elbow
  • Fluid Velocity
  • Solid Particles Diameter
  • Injection Flow Rate
[1] Zhang J., McLaury B. S., Shirazi S. A., Modeling sand fines erosion in elbows mounted in series, Wear, Vol. 402, 2018, pp. 196-206.
[2] Zahedi P., Parvandeh S., Asgharpour A., McLaury B. S., Shirazi S. A., McKinney B. A., Random forest regression prediction of solid particle Erosion in elbows, Powder Technology, Vol. 338, 2018, pp. 983-992.
[3] Edwards J. K., McLaury B. S., Shirazi S. A., Modeling solid particle erosion in elbows and plugged tees, Journal of Energy Resources Technology, Vol. 123 (4), 2001, pp. 277-284.
[4] Chen X., McLaury B. S., Shirazi S. A., A comprehensive procedure to estimate erosion in elbows for gas/liquid/sand multiphase flow, Journal of Energy Resources Technology, Vol. 128 (1), 2006, pp. 70-78.
[5] Kang R., Liu H., An integrated model of predicting sand erosion in elbows for multiphase flows, Powder Technology, Vol. 366, 2020, pp. 508-519.
[6] Zhu H., Pan Q., Zhang W., Feng G., Li X., CFD simulations of flow erosion and flow-induced deformation of needle valve: Effects of operation, structure and fluid parameters, Nuclear Engineering and Design, Vol. 273, 2014, pp. 396-411.
[7] Jafari M., Mansoori Z., Avval M. S., Ahmadi G., Ebadi A., Modeling and numerical investigation of erosion rate for turbulent two-phase gas–solid flow in horizontal pipes, Powder technology, Vol. 267, 2014, pp. 362-370.
[8] Lin N., Lan H., Xu Y., Dong S., Barber G., Effect of the gas–solid two-phase flow velocity on elbow erosion, Journal of Natural Gas Science and Engineering, Vol. 26, 2015, pp. 581-586.
[9] Peri S., Rogers B. M., Computational fluid dynamics (cfd) erosion study, in:  SPE Annual Technical Conference and Exhibition, OnePetro, Anaheim, California, U.S.A., 2007.
[10] Mansouri A., Arabnejad H., Karimi S., Shirazi S. A., McLaury B. S., Improved CFD modeling and validation of erosion damage due to fine sand particles, Wear, Vol. 338, 2015, pp. 339-350.
[11] Zahedi P., Vieira R. E., Shirazi S. A., McLaury B. S., Liquid film thickness and erosion of elbows in gas-liquid annular flow, in:  CORROSION 2016, OnePetro, Vancouver, British Columbia, Canada, 2016.
[12] Parsi M., Kara M., Sharma P., McLaury B. S., Shirazi S. A., Comparative study of different erosion model predictions for single-phase and multiphase flow conditions, in: Offshore Technology Conference, OnePetro, Houston, Texas, USA, 2016.
[13] Liu J., BaKeDaShi W., Li Z., Xu Y., Ji W., Zhang C., Cui G., Zhang R., Effect of flow velocity on erosion–corrosion of 90-degree horizontal elbow, Wear, Vol. 376, 2017, pp. 516-525.
[14] Liu M., Liu H., Zhang R., Numerical analyses of the solid particle erosion in elbows for annular flow, Ocean Engineering, Vol. 105, 2015, pp. 186-195.
[15] Zamani M., Seddighi S., Nazif H. R., Erosion of natural gas elbows due to rotating particles in turbulent gas-solid flow, Journal of Natural Gas Science and Engineering, Vol. 40, 2017, pp. 91-113.
[16] Vieira R. E., Parsi M., Zahedi P., McLaury B. S., Shirazi S. A., Sand erosion measurements under multiphase annular flow conditions in a horizontal-horizontal elbow, Powder technology, Vol. 320, 2017, pp. 625-636.
[17] Vieira R. E., Mansouri A., McLaury B. S., Shirazi S. A., Experimental and computational study of erosion in elbows due to sand particles in air flow, Powder Technology, Vol. 288, 2016, pp. 339-353.
[18] Khan R., Ya H. H., Pao W., Khan A., Erosion–Corrosion of 30°, 60°, and 90° Carbon Steel Elbows in a Multiphase Flow Containing Sand Particles, Materials, Vol. 12 (23), 2019, pp. 3898.
[19] Xie D., Wu Y., Zhang Z., Wang T., Chen P., Cui Y., Li C., Feng S., Numerical Simulation of Elbow Erosion in Liquid-Solid Two-Phase Flow, in: 2nd International Conference on Mechanical, Electrical and Material Application (MEMA), IOP Publishing, Xian, China, 2019, pp. 012169.
[20] Kosinska A., Balakin B. V., Kosinski P., Theoretical analysis of erosion in elbows due to flows with nano-and micro-size particles, Powder Technology, Vol. 364, 2020, pp. 484-493.
[21] Sedrez T. A., Shirazi S. A., Erosion evaluation of elbows in series with different configurations, Wear, Vol. 476, 2021, pp. 203683.
[22] Finnie I., McFadden D. H., On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence, Wear, Vol. 48 (1), 1978, pp. 181-190.
[23] Shirazi S. A., McLaury B. S., Shadley J. R., Rybicki E. F., Generalization of the API RP 14E guideline for erosive services, Journal of Petroleum Technology, Vol. 47 (08), 1995, pp. 693-698.
[24] Veritas D. N., Erosive wear in piping systems–recommended practice RP O501, Det Norske Veritas, 1996.
[25] Darihaki F., Zhang J., Vieira R. E., Shirazi S. A., The near-wall treatment for solid particle erosion calculations with CFD under gas and liquid flow conditions in elbows, Advanced Powder Technology, Vol. 32 (5), 2021, pp. 1663-1676.