بررسی جاذب‌های زئولیتی برای جذب گازهای اسیدی CO2 و H2S

نوع مقاله : ترویجی

نویسندگان

1 کارشناسی ارشد ترموسینتیک و کاتالیست، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف

2 دکترا، استاد مهندسی شیمی، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف

3 دکترا، استادیار مهندسی شیمی، پژوهشکده توسعه فناوری‌های کاتالیست، پژوهشگاه صنعت نفت

4 دکترا، مهندسی شیمی، پژوهشکده توسعه فناوری‌های کاتالیست، پژوهشگاه صنعت نفت

چکیده

امروزه به دلیل گسترش صنایع، انتشار بیش‌ازحد گاز‌های گلخانه‌ای ازجمله CO2 به اتمسفر باعث بروز مشکلات متعدد زیست‌محیطی ازجمله گرمایش زمین شده است. علاوه بر اثرات مخرب زیست‌محیطی CO2، وجود این گاز به همراه H2S در گاز طبیعی، باعث کاهش ارزش حرارتی و همچنین به دلیل خاصیت اسیدی بالا منجر به خوردگی تجهیزات فرایندی می‌شود. یکی از روش‌های صنعتی مؤثر برای جذب و جداسازی کربن، استفاده از جاذب‌های مختلف خصوصاً جاذب‌های زئولیتی است. در این مقاله به بررسی جاذب‌های زئولیتی مورد استفاده در جذب سطحی CO2 و H2S از یک مخلوط گازی پرداخته می‌شود. همچنین در ادامه مکانیسم‌های جذب-تفکیک-اکسیداسیون H2S بر روی زئولیت‌های FAU و LTA و نیز زئولیت 13X مورد بررسی قرار می‌گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of zeolites for CO2 and H2S adsorption

نویسندگان [English]

  • Amir Mohamad Najafi 1
  • Farhad Khorashe 2
  • Saeed Soltanali 3
  • Hamid Ghassabzadeh 4
1 M.Sc. Student in Chemical and Petroleum Engineering, Sharif University of Technology
2 Professor in Chemical and Petroleum Engineering, Sharif University of Technology
3 Assistant Professor in Catalysis Technologies Development, Research Institute of Petroleum Industry (RIPI)
4 PhD in Catalysis Technologies Development Division, Research Institute of Petroleum Industry (RIPI)
چکیده [English]

Nowadays with the advancement of industry, more greenhouse gases especially CO2 are being emitted to the atmosphere, therefore it leads to some massive environmental issues such as global warming. In addition to the harmful environmental effects of CO2, presence of this gas with H2S in natural gas contribute to low heating value and furthermore corrosion of process equipment due to the high acidity of these gases. One of the effective industrial methods is utilizing amine and ammonia solutions for absorbing and carbon capturing. However, due to its drawbacks and also advantages of adsorption process specially zeolite adsorbents, adsorption has drawn researchers’ attention. In this context, will be discussed about some zeolite adsorbents which are used for CO2 and H2S adsorption and discussion about mechanisms of H2S adsorption on FAU, LTA, and 13X zeolites.

کلیدواژه‌ها [English]

  • Zeolite Adsorbents
  • Acid Gas Adsorption
  • CO2 and H2S Capture
[1] Wu, L., J. Liu, H. Shang, S. Li, J. Yang, L. Li, and J. Li, Capture CO2 from N2 and CH4 by zeolite L with different crystal morphology. Microporous and Mesoporous Materials, 2021. 316: p. 110956.
[2] Siegelman, R.L., P.J. Milner, E.J. Kim, S.C. Weston, and J.R. Long, Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions. Energy & Environmental Science, 2019. 12 (7): pp. 2161-2173.
[3] Vitillo, J.G., Introduction: Carbon Capture and Separation. Chemical Reviews, 2017. 117(14): pp. 9521-9523.
[4] Huang, W.J., C.Y. Chen, and C.T. Chou, Concentration and recovery of SO2 from flue gas by pressure swing adsorption. Journal of the Chinese Institute of Chemical Engineers, 2006. 37: pp. 149-157.
[5] Boot-Handford, M.E., J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, N. Mac Dowell, J.R. Fernández, M.-C. Ferrari, R. Gross, J.P. Hallett, R.S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R.T.J. Porter, M. Pourkashanian, G.T. Rochelle, N. Shah, J.G. Yao, and P.S. Fennell, Carbon capture and storage update. Energy & Environmental Science, 2014. 7 (1): pp. 130-189.
[6] Yoo, M., S.-J. Han, and J.-H. Wee, Carbon dioxide capture capacity of sodium hydroxide aqueous solution. Journal of Environmental Management, 2013. 114: pp. 512-519.
[7] Jassim, M.S., G. Rochelle, D. Eimer, and C. Ramshaw, Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 2007. 46 (9): pp. 2823-2833.
[8] Rochelle, G.T., Amine Scrubbing for CO2 Capture. Science, 2009. 325 (5948): pp. 1652-1654.
[9] Thompson, J.A., Acid gas adsorption on zeolite SSZ-13: Equilibrium and dynamic behavior for natural gas applications. AIChE Journal, 2020. 66 (10): p. e16549.
[10] Oschatz, M. and M. Antonietti, A search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ. Sci., 2017. 11.
[11] Panda, D., E.A. Kumar, and S.K. Singh, Introducing mesoporosity in zeolite 4A bodies for Rapid CO2 capture. Journal of CO2 Utilization, 2020. 40: p. 101223.
[12] Alaei Kadijani, J. and E. Narimani, Simulation of hydrodesulfurization unit for natural gas condensate with high sulfur content. Applied Petrochemical Research, 2016. 6 (1): pp. 25-34.
[13] Shimekit, B. and H. Mukhtar, Natural Gas Purification Technologies - Major Advances for CO2 Separation and Future Directions. 2012.
[14] Perot, G. and M. Guisnet, Advantages and disadvantages of zeolites as catalysts in organic chemistry. Journal of Molecular Catalysis, 1990. 61(2): pp. 173-196.
[15] Moliner, M., C. Martínez, and A. Corma, ChemInform Abstract: Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 2013. 26: pp. 246–258.
[16] Ding, K., A. Corma, J.A. Maciá-Agulló, J.G. Hu, S. Krämer, P.C. Stair, and G.D. Stucky, Constructing Hierarchical Porous Zeolites via Kinetic Regulation. Journal of the American Chemical Society, 2015. 137(35): pp. 11238-11241.
[17] Corma, A., M.J. Díaz-Cabañas, J.L. Jordá, C. Martínez, and M. Moliner, High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 2006. 443(7113): pp. 842-845.
[18] Zhang, X., D. Liu, D. Xu, S. Asahina, K.A. Cychosz, K.V. Agrawal, Y.A. Wahedi, A. Bhan, S.A. Hashimi, O. Terasaki, M. Thommes, and M. Tsapatsis, Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching. Science, 2012. 336 (6089): pp. 1684-1687.
[19] Valtchev, V. and L. Tosheva, Porous Nanosized Particles: Preparation, Properties, and Applications. Chemical Reviews, 2013. 113(8): pp. 6734-6760.
[20] Hill, G.L., E. Bailey, M.C. Stennett, N.C. Hyatt, E.M. Maddrell, P.F. McMillan, and J.A. Hriljac, High-Pressure and -Temperature Ion Exchange of Aluminosilicate and Gallosilicate Natrolite. Journal of the American Chemical Society, 2011. 133 (35): pp. 13883-13885.
[21] Yang, J., Q. Zhao, H. Xu, L. Li, J. Dong, and J. Li, Adsorption of CO2, CH4, and N2 on Gas Diameter Grade Ion-Exchange Small Pore Zeolites. Journal of Chemical & Engineering Data, 2012. 57: pp. 3701–3709.
[22] Van den Bergh, J., M. Mittelmeijer-Hazeleger, and F. Kapteijn, Modeling Permeation of CO2/CH4, N2/CH4, and CO2/Air Mixtures across a DD3R Zeolite Membrane. The Journal of Physical Chemistry C, 2010. 114 (20): pp. 9379-9389.
[23] Pillai, R.S., S.A. Peter, and R.V. Jasra, Adsorption of carbon dioxide, methane, nitrogen, oxygen and argon in NaETS-4. Microporous and Mesoporous Materials, 2008. 113 (1): pp. 268-276.
[24] Yahia, M., Q.N. Phan Le, N. Ismail, M. Essalhi, O. Sundman, A. Rahimpour, M.M. Dal-Cin, and N. Tavajohi, Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation. Microporous and Mesoporous Materials, 2021. 312: pp. 110761.
[25] Zarshenas, K., A. Raisi, and A. Aroujalian, Mixed matrix membrane of nano-zeolite NaX/poly (ether-block-amide) for gas separation applications. Journal of Membrane Science, 2016. 510: pp. 270-283;
[26] Jiang, Q., J. Rentschler, G. Sethia, S. Weinman, R. Perrone, and K. Liu, Synthesis of T-type zeolite nanoparticles for the separation of CO2/N2 and CO2/CH4 by adsorption process. Chemical Engineering Journal, 2013. 230: pp. 380-388.
[27] Gorring, R.L., Diffusion of normal paraffins in zeolite T: Occurrence of window effect. Journal of Catalysis, 1973. 31(1): pp. 13-26.
[28] Mougenel, J.C. and H. Kessler, Ionic conductivity of offretite, erionite, and zeolite T: application to the determination of stacking faults. Zeolites, 1991. 11(1): pp. 81-84.
[29] Rivera-Ramos, M., G. Ruiz-Mercado, and A. Hernández-Maldonado, Separation of CO2 from Light Gas Mixtures using Ion-Exchanged Silicoaluminophosphate Nanoporous Sorbents. Industrial & Engineering Chemistry Research - IND ENG CHEM RES, 2008. 47.
[30] Cui, Y., H. Kita, and K.-I. Okamoto, Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability. Journal of Membrane Science, 2004. 236 (1): pp. 17-27.
[31] Rad, M.D., S. Fatemi, and S.M. Mirfendereski, Development of T type zeolite for separation of CO2 from CH4 in adsorption processes. Chemical Engineering Research and Design, 2012. 90 (10): pp. 1687-1695.
[32] Li, R., N. Linares, J.G. Sutjianto, A. Chawla, J. Garcia-Martinez, and J.D. Rimer, Ultrasmall Zeolite L Crystals Prepared from Highly Interdispersed Alkali-Silicate Precursors. Angewandte Chemie International Edition, 2018. 57(35): pp. 11283-11288.
[33] Lupulescu, A.I., M. Kumar, and J.D. Rimer, A Facile Strategy To Design Zeolite L Crystals with Tunable Morphology and Surface Architecture. Journal of the American Chemical Society, 2013. 135(17): pp. 6608-6617.
[34] Wang, Y. and M.D. LeVan, Adsorption Equilibrium of Binary Mixtures of Carbon Dioxide and Water Vapor on Zeolites 5A and 13X. Journal of Chemical & Engineering Data, 2010. 55(9): pp. 3189-3195.
[35] Younas, M., M. Sohail, L.K. Leong, M.J. Bashir, and S. Sumathi, Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. International Journal of Environmental Science and Technology, 2016. 13 (7): pp. 1839-1860.
[36] Akhtar, F., Q. Liu, N. Hedin, and L. Bergström, Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly. Energy & Environmental Science, 2012. 5 (6): pp. 7664-7673.
[37] Chen, C. and W.-S. Ahn, CO2 adsorption on LTA zeolites: Effect of mesoporosity. Applied Surface Science, 2014. 311: pp. 107-109.
[38] Koo, J., I.-C. Hwang, X. Yu, S. Saha, Y. Kim, and K. Kim, Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching. Chemical Science, 2017. 8 (10): pp. 6799-6803.
[39] de Oliveira, L.H., J.G. Meneguin, M.V. Pereira, E.A. da Silva, W.M. Grava, J.F. do Nascimento, and P.A. Arroyo, H2S adsorption on NaY zeolite. Microporous and Mesoporous Materials, 2019. 284: pp. 247-257.
[40] Maugé, F., A. Sahibed-Dine, M. Gaillard, and M. Ziolek, Modification of the Acidic Properties of NaY Zeolite by H2S Adsorption—An Infrared Study. Journal of Catalysis, 2002. 207 (2): pp. 353-360.
[41] Sigot, L., G. Ducom, and P. Germain, Adsorption of hydrogen sulfide (H2S) on zeolite (Z): Retention mechanism. Chemical Engineering Journal, 2016. 287: pp. 47-53.
[42] Adib, F., A. Bagreev, and T.J. Bandosz, Effect of pH and Surface Chemistry on the Mechanism of H2S Removal by Activated Carbons. Journal of Colloid and Interface Science, 1999. 216 (2): pp. 360-369.