بکارگیری شبکه عصبی،‌مدلسازی آماری و الگوریتم بهینه سازی SQP در مدلسازی و بهینه سازی عملیاتی واحد کت کراکر پالایشگاه آبادان

نوع مقاله: علمی ترویجی

نویسندگان

1 مسئول نوبتکاری بهره برداری، شرکت نفت و گاز کارون، اهواز، ایران

2 استادیار پژوهشی و مسئول پروژه پژوهش توسعه و کنترل فرآیند- پژوهشکده توسعه و فناوری تجهیزات- پژوهشگاه صنعت نفت- ضلع غربی استادیوم آزادی- تهران - ایران

3 مهندسی پالایش، شرکت پالایش نفت آبادان، آبادان، ایران

چکیده

در این تحقیق ‌برای روشن شدن تاثیر متغیرهای ورودی مهم فرآیندی که شامل دمای راکتور، ‌دمای قسمت بالای برج جداساز، ‌شدت جریان خوراک و دمای پایین برج بوتان زدا بودند بر متغیرهای خروجی مقدار بنزین تولیدی،‌گاز مایع،‌عدد اکتان و درصد تبدیل محصولات از شبکه عصبی و مدلهای آماری استفاده شد . با توجه به کارآیی هریک از این دوروش، شبکه عصبی به عنوان مدل مناسب انتخاب شده و مقدار خطای آن کمینه شد. براساس مدل انتخاب شده و بکارگیری الگوریتم بهینه سازی SQP شرایط مناسب عملیاتی برای بیشینه شدن تولید بنزین مشخص شد،‌براین اساس در دمای راکتور ºC 524، شدت جریان خوراک 43000 بشکه درروز،‌ دمای قسمت بالای برج جداساز برابر با ºC 138،‌دمای قسمت پایین برج بوتان زدا برابر با ºC 179 مقدار بنزین در حداکثر مقدار خود یعنی 22575 بشکه درروز خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Neural Network, statistical modeling and SQP algorithms in Modeling and Optimization of Abadan fluid catalytic cracking unit

نویسندگان [English]

  • Ali Imani 1
  • Sorood Zahedi Abghari 2
  • Mohamad Ismail Dorostkar 3
1 Shift Manager, Karoon Oil and Gas Production Company, Ahwaz, Iran
2 Assistant Professor and Project Manager Modeling and control department Research Institute of Petroleum Industry (RIPI), Tehran, Iran
3 Refinement Engineering, Abadan Oil Refining Company, Abadan, Iran
چکیده [English]

Many decades after innovation and development of FCC process, the impact of this process on production of gasoline in refinery complexes is still highlighted. In this research, to determine effects of input variables such as reactor temperature, the temperature of the top of fractionator column, the temperature of bottom of debutanizer on gasoline and LPG flowrates, RON and conversion of the process ANN and statistical modeling methods were applied. Based on the applicability and reliability of two methods, the ANN model was chosen as the suitable model. By application of SQP algorithm and utilizing the developed model, the optimum conditions were determined. So, the optimum reactor temperature, feed flow rate, the temperature of the top of fractionator column, the temperature of debutanizer column are respectively 524ºC, 43000 bbl/day,138ºC and 179ºC. The maximum obtained gasoline production under the optimum condition is 22575 bbl/day.

کلیدواژه‌ها [English]

  • Neural network
  • Catalytic Cracking process
  • Statistical Model
  • Optimization Model

 

1. اوشال فرزین، طاهری‌پور سهیل، لطفی نژاد امین: «بررسی تاثیر افزایش سرعت ورودی بر عملکرد سایکلون‌های فرآیند کت‌کراکر پالایشگاه آبادان»، سومین کنگره ملی مهندسی نفت، تهران، انستیتو مهندسی صنعت نفت، 1390

2. رضایی طوس، عمیدپور مجید، صیادی حسین: «بررسی امکان کاهش مصرف انرژس در واحد کت کراکر FCCU شرکت پالایش آبادان از طریق بهینه‌سازی متغیرهای عملیاتی»، گزارش پروژه‌های تحقیقاتی انجام در شرکت پالایش و پخش از سال 1381 تا سال 1390.

3. Elamurgun P, Dinesh Kumar D; “ Modeling and control of Fluid Catalytic Cracking unit in Petroleum Refinery” IJCCIS. 2(1), 2010; PP 55-59

4. Heydari M., Ale Ebrahimi H., Dabir B.; “ Modeling of an Industrial Riser in the Fluid catalytic cracking unit” American Journal of Applied Sciences. 7(2), 2010:pp 221-226

5. Roj E., Wilk M. “ Simulation of an Absorption Column Performance using Feed-forward Neural Networks in Nitric Acid Productionˮ J. Computers chem. 22,1998: pp 909-912.

6. Do gan, E., Yuksel, I., Ki¸si, O. “Estimation of Total Sediment Load Concentration Obtained by Experimental Study using Artificial Neural Networksˮ. J. Environ Fluid Mech.7, 2007: pp 271–288.

7. Yuceer M. “ Artificial Neural Network Models for HFCS Isomerization Process ˮ. J. Neural Comput & Applic. 19, 2010: pp 979–986.

8. Dasila.P, Choudhury.I.R, Sarafa.D.N. “Estimation of FCC Feed Composition from Routinely Measured Lab Properties through ANN Modelˮ. J. Fuel Processing Technology.125 ,2014: pp 155–162.

9. Opoulos.J. M, Papadokonstadakis. S, Arampatzis. G.“ Modelling of an Industrial Fluid Catalytic Cracking Unit using Neural Networksˮ. J. Institution of Chemical Engineers. 79, 2001.

10. داگلاس س، مری مونگلو. طراحی و تحلیل آزمایش‌ها. مترجم رسول نورالنساء، چ اول، تهران: انتشارات دانشگاه علم و صنعت، 1386.

11. لونشپیل، اکتاو. مهندسی واکنش‌های شیمیایی. مترجم مرتضی سهرابی، ج دوم، چ اول، تهران: انتشارات دانشگاه صنعتی امیرکبیر، 1385، ص ص 323-325.