مدل‌سازی و ارزیابی پیامد بروز سانحه در مخازن استوانه‌ای ذخیره متان: مطالعه موردی پالایشگاه شهید هاشمی نژاد (خانگیران - سرخس)

نوع مقاله : ترویجی

نویسندگان

1 دانشجو

2 عضو هیئت علمی دانشگاه صنعت نفت

چکیده

ببه‌منظور اجرای واقع‌گرایانه مدیریت بحران، باید سوانح قابل وقوع، به‌درستی کشف و پیامدهای ناشی از آنان به‌طور علمی ارزیابی شوند. هرگونه نشتی در مخازن استوانه‌ای ذخیره متان می‌تواند منجر به بروز حادثه آتش‌سوزی، انفجار، خسارت به تجهیزات یا ایجاد مسمومیت برای کارکنان یا مردم باشد؛ بنابراین با ارزیابی پیامد و مدل‌سازی آن می‌توان شدت هرگونه حادثه ممکن‌الوقوع را پیش‌بینی و به کمک آن اقدامات اصلاحی متناسب را اتخاذ نمود. مدل‌سازی پیامد توسط نرم‌افزار ALOHA و ارزیابی وسعت مخاطرات با نرم‌افزار CAMEO MARPLOT برای مخازن استوانه‌ای ذخیره متان در پالایشگاه شهید هاشمی نژاد نشان داده است که بارزترین حادثه ناشی از نشت متان، جت آتش است. رعایت فواصل ایمن پالایشگاه از شهر امکان آسیب از طریق جت آتش به شهروندان را به صفر رسانده است؛ اما برای کارکنان پالایشگاه می‌بایست تدابیر ایمنی متناسب با لایه‌های مختلف خطر محتمل اندیشیده شود که این مورد در پالایشگاه شهید هاشمی‌نژاد به‌خوبی رعایت شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and assessment of accidents consequences in methane cylindrical tanks: Hasheminejad martyr refinery (Khangiran - Sarakhs)

نویسندگان [English]

  • morteza Jalali alenjareghi 1
  • Seyed Jalal'eddin Hashemi 2
1 university student
2
چکیده [English]

In order to implement realistic crisis management, the probable accidents consequences must properly be explored and assessed scientifically. Any leakage in them can lead to fire, explosion, equipment damage or toxicity to personnel or people, so that it can be modeled to assess and predict the impact and severity of any incident by adopting appropriate corrective measures. consequence modeling software ALOHA to help assess the extent of the risks and CAMEO MARPLOT software for storing methane conical tanks at the refinery martyr Hasheminejad done, it has been found that most accident caused by the leakage of methane, is jet fire. Refinery compliance a safe distance from city, possiblility of damage by fire jet to citizens tend to zero, but for refinery personnel appropriate safety measures to the various levels of risk should be considered likely that the case is well respected Hasheminezhad martyr refinery.

کلیدواژه‌ها [English]

  • Modeling
  • Risk Assessment
  • consequence assessment
  • methane tanks
  • crisis management
[1] Wang Wenjing, Sun Biao, GuoKaihua, Quantitative Risk Analysis for LNG Station Accidents, Journal of Safety Science and Technology 7,2011, p. 114-117.
[2] Hille, R., Assessment of conventional and radiological risks for the handling of hazardous substances in a research centre. Process Safety, Environ. Prot., 80,2002, pp. 298–304.
[3] NOAA and U.S. EPA, ALOHA 5.2.3 Online Help, Office of Response and Restoration of the National Oceanic and Atmospheric Administration and Chemical Emergency Preparedness and Prevention Office of the U.S. Environmental Protection, Seattle, WA, USA.2015.
[4] Hillairet, J., Voyer, D., Frincu, B., Meneghini, O., Ekedahl, A. and Goniche, M., Modeling of lower hybrid antennas using the ALOHA code and comparisons with Tore Supra experiments. Fusion Engineering and Design, 84,2009, pp. 953–955.
[5] Hassim, M.H. and Hurme, M., Occupational chemical exposure and risk estimation in process development and design. Process Safety, Environ. Prot., 88, 2010, pp. 225–235.
[6] Ohba, R., Kouchi, A., Hara, T., Vieillard, V. and Nedelka, D., Validation of heavy and light gas dispersion models for the safety analysis of LNG tank. J. Loss Prev. Process Ind., 17, 2004, pp. 325–337.
[7] Shariff, A.M. and Leong, C.T., Inherent risk assessment-A new concept to evaluate risk in preliminary design stage. Process Safety, Environ. Prot., 87, 2009, pp. 371–376.
[8] Hirst, I.L., Maddison, T.E. and Porter, S.R., Appropriate risk assessment methods for major accident establishments. Process Safety, Environ. Prot., 81,2003, pp. 12–18.
[9] Darbra, R.M., Demichela, M. and Murè, S., Preliminary risk assessment of ecotoxic substances accidental releases in major risk installations through fuzzy logic. Process Safety, Environ. Prot., 86,2008, pp. 103–111.
[10] Kao, C.S., on constructing assessing mode for equipment risk management: The Petrochemical Industry Cases. Master Thesis, Fu Jen Catholic University, 2008.
[11] Procedures for performing a failure mode, effects and criticality analysis. Department of Defense, MIL-STD-1629A, USA.2005, P.114.
[12] Carlson C.S., “Failure Mode and Effects Analysis (FMEA)”, John Wiley & Sons, 2012.
[13] Kotek a L., Tabas M., “HAZOP study with qualitative risk analysis for prioritization of corrective and preventive actions”, 20th International Congress of Chemical and Process Engineering CHISA 2012, pp. 808 – 815.
[14] I, Y.P., Shu, C.M. and Chong, C.H., Applications of 3D QRA technique to the fire/explosion simulation and hazard mitigation within a naphtha-cracking plant. J. Loss Prev. Process Ind., 22,2009, pp. 506–515.
[15] Aymen M., Samuel B., Ali S. and Michel T., Dynamic risk management unveils productivity improvements. J. Loss Prev. Process Ind., 22,2009, pp. 25–34.
[16] Suardin, J.A., McPhateJr, A.J., Sipkema, A., Childs, M. and Mannan M.S., Fire and explosion assessment on oil and gas floating production storage offloading (FPSO): An effective screening and comparison tool, Process Saf. Environ. Prot., 87, 2009, pp. 147–160.
[17] XuYabo, QianXinming, Liu Zhenyi, Quantitative Risk Analysis on the Leakage of Compressed Natural Gas Pipeline, China Safety Science Journal 18, 2008, p. 146-149.
[18] Wang Shukun,.Risk Analysis of Fire and Explosion in the Combustion System of Natural Gas Power Generation, Electric safety technology 6,2004, p. 11-13.
[19] Zhang Jianwen, Lei Da, Risk Analysis of Jet Fire Radiation in the Leakage Accident of Natural Gas Pipeline, Journal of Safety and Environment 11, 2011, p. 233-236.
[20] Jiang Huanyong, Han Li, Shao Yong, Leakage Consequence Simulation and Quantitative Risk Assessment on Gas Off-Take Station, Oil & Gas Storage and Transportation 28, 2009, p. 23-26.
[21] Liu Mao, Analysis of Theory and Method in Accident Risk. Peking University Press, Beijing, 2011, p. 188-192.
[22] Steven, R., Hanna, Rex E. Britter, “Wind Flow and Vapor Cloud Dispersion at Industrial and Urban Sites”, 2002.
[23] Zarate L, Arnaldos J, Casal J. Establishing safety distances for wildland fires. J Fire Saf.2008; 43:565–575.
[24] Shao Hui, Zhu Yueqing, Shao Feng, Study of Urban Regional Risk Based on Information Diffusion, China Safety Science Journal 21,2011, p. 166-170.
[25] RenJunping,.Quantitative Calculation of Risk for Industrial Accident, Nankai University, Tianjin, 2005.
[26] Central Weather Iran, 2015. http://www.irimo.ir/