رویکردهایی جهت کاهش مصرف آب در صنایع فرآیندی با تاکید بر صنعت پالایش نفت

نوع مقاله : ترویجی

نویسنده

دانشگاه تهران

چکیده

در این مقاله مروری بر پژوهش های ارائه شده در زمینه طراحی یکپارچه شبکه آب در صنایع فرآیندی انجام گرفته است. در ابتدا به تعریف مسئله سنتز شبکه آب پرداخته شده و در دو گروه اصلی الف) بار جرمی ثابت و ب) شدت جریان ثابت تقسیم بندی شده است. جهت حل مسائل سنتز شبکه آب دو رویکرد پینچ آبی و بهینه سازی ریاضی استفاده می شود که پژوهش های منتشر شده در هر دو زمینه بررسی شده اند. در پایان شبکه مصرف آب و آلاینده های محدود کننده استفاده مجدد از آب در پالایشگاه نفت بررسی شده و تعدادی از مهمترین پژوهش های انجام شده برای حل این مسئله در پالایشگاه نفت از منظر تعداد آلاینده های کلیدی، نوع مسئله و رویکرد حل آن نشان داده شده اند. گزارش های متعدد نشان می دهد استفاده از آنالیز پینچ آب موجب کاهش قابل توجه مصرف آب در صنایع فرآیندی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Approaches to decrease water consumption in process industries with an emphasis on the oil refining industry

چکیده [English]

In this paper, a review has been conducted on integrated design of water network in process industries. First, the concept of water network synthesis has been defined and categorized in the two main groups of (i) Fixed mass load and (ii) fixed flow rate. In order to solve water network synthesis problems, two water pinch and mathematical optimization approaches are being used and the published researches related to each of these approaches are reviewed. In the end, the water consumption network and the limiting pollutants of water reuse in oil refinery are studied and some of the most important researches about solving this problem in oil refinery are presented considering different aspects such as the number of key pollutants, problem description and their solving approach points of view. Some studies reported that Water Pinch Analysis and could reduce water consumption in process significantly.

کلیدواژه‌ها [English]

  • Closed-Circuit Water System
  • Water Pinch Analysis
  • Mathematical Optimization
  • Water Recovery
  • Process Industries
  1. UN-WATER. "The volume of freshwater resources on Earth is around 35 million km3," http://www.unwater.org/statistics/statistics-detail/en/c/211801/.
  2. Khor C. S., Chachuat B., and Shah N., “Optimization of water network synthesis for single-site and continuous processes: milestones, challenges, and future directions,” Industrial & Engineering Chemistry Research, vol. 53, no. 25, pp. 10257-10275, 2014.
  3. Wang Y., and Smith R., “Wastewater minimisation,” Chemical Engineering Science, vol. 49, no. 7, pp. 981-1006, 1994.
  4. Khor C. S., Chachuat B., and Shah N., “Fixed-flowrate total water network synthesis under uncertainty with risk management,” Journal of cleaner production, vol. 77, pp. 79-93, 2014.
  5. Klemeš J. J., Varbanov P. S., and Kravanja Z., “Recent developments in process integration,” Chemical Engineering Research and Design, vol. 91, no. 10, pp. 2037-2053, 2013.
  6. 6.      PANJESHAHI M. H., “Applications of Energy and Water Process Integration Methodologies in Oil Refineries and Petrochemical Complexes,” Handbook of Process Integration (PI) Minimisation of Energy and Water Use, Waste and Emissions. Woodhead Publishing, pp. 633-702, 2013.
  7. Panjeshahi M., and Sh M., “Optimizing water use and wastewater in petrochemical processes,” Journal of Iran Energy, vol. 11, pp. 18-35, 2008.
  8. پنجه شاهی م. ح. و عطایی آ.، "بهینه‌سازی مصرف آب و تولید پساب به روش تکنولوژی پینچ آبی"، هفتمین کنگره بین‌المللی مهندسی عمران، دانشگاه تربیت مدرس، تهران، ایران، 1385.
  9. Hesas R. H., Tarighaleslamir A., Omidkhah M., and Baei M. S., “An Economical Comparative Study of Different Methods for Decrease Cooling Towers Makeup Cost in Oil Refineries,” World Applied Sciences Journal, vol. 12, no. 7, pp. 988-998, 2011.
  10. Jezowski J., “Review of water network design methods with literature annotations,” Industrial & Engineering Chemistry Research, vol. 49, no. 10, pp. 4475-4516, 2010.
  11. El-Halwagi M. M., "Sustainable design through process integration: fundamentals and applications to industrial pollution prevention, resource conservation, and profitability enhancement": Butterworth-Heinemann, 2017.
  12. Mann J. G., and Liu Y. A., "Industrial Water Reuse and Wastewater Minimization": McGraw-Hill, 1999.
  13. El-Halwagi M. M., Gabriel F., and Harell D., “Rigorous graphical targeting for resource conservation via material recycle/reuse networks,” Industrial & Engineering Chemistry Research, vol. 42, no. 19, pp. 4319-4328, 2003.
  14. Khor C. S., Chachuat B., and Shah N., “A superstructure optimization approach for water network synthesis with membrane separation-based regenerators,” Computers & Chemical Engineering, vol. 42, pp. 48-63, 2012.
  15. Foo D. C., "Process integration for resource conservation": CRC Press, 2012.
  16. Wang Y., and Smith R., “Waste-water minimization with flow-rate constraints,” Chemical engineering research & design, vol. 73, no. 8, pp. 889-904, 1995.
  17. Castro P., Matos H., Fernandes M., and Nunes C. P., “Improvements for mass-exchange networks design,” Chemical Engineering Science, vol. 54, no. 11, pp. 1649-1665, 1999.
  18. Foo D. C. Y., “State-of-the-art review of pinch analysis techniques for water network synthesis,” Industrial & Engineering Chemistry Research, vol. 48, no. 11, pp. 5125-5159, 2009.
  19. Kuo W.-C., and Smith R., “Design of water-using systems involving regeneration,” Process safety and environmental protection, vol. 76, no. 2, pp. 94-114, 1998.
  20. Deng C., Feng X., and Bai J., “Graphically based analysis of water system with zero liquid discharge,” chemical engineering research and design, vol. 86, no. 2, pp. 165-171, 2008.
  21. Hallale N., “A new graphical targeting method for water minimisation,” Advances in Environmental Research, vol. 6, no. 3, pp. 377-390, 2002.
  22. Ng D., Foo D., Tan R., and Tan Y., “Ultimate flowrate targeting with regeneration placement,” Chemical Engineering Research and Design, vol. 85, no. 9, pp. 1253-1267, 2007.
  23. Bandyopadhyay S., and Cormos C.-C., “Water management in process industries incorporating regeneration and recycle through a single treatment unit,” Industrial & Engineering Chemistry Research, vol. 47, no. 4, pp. 1111-1119, 2008.
  24. Ng D., Foo D. C. Y., and Tan R., “Automated targeting for resource conservation network with interception placement,” Chem Eng Trans, vol. 18, pp. 857-862, 2009.
  25. Olesen S., and Polley G., “A simple methodology for the design of water networks handling single contaminants,” Chemical Engineering Research and Design, vol. 75, no. 4, pp. 420-426, 1997.
  26. Kuo W.-C., and Smith R., “Designing for the interactions between water-use and effluent treatment,” Chemical Engineering Research and Design, vol. 76, no. 3, pp. 287-301, 1998.
  27. Cao D., Feng X., and Duan X., “Design of water network with internal mains for multi-contaminant wastewater regeneration recycle,” Chemical Engineering Research and Design, vol. 82, no. 10, pp. 1331-1336, 2004.
  28. Gomes J. F., Queiroz E. M., and Pessoa F. L., “Design procedure for water/wastewater minimization: single contaminant,” Journal of Cleaner Production, vol. 15, no. 5, pp. 474-485, 2007.
  29. Polley G. T., and Polley H. L., “Design better water networks,” Chemical Engineering Progress, vol. 96, no. 2, pp. 47-52, 2000.
  30. Aly S., Abeer S., and Awad M., “A new systematic approach for water network design,” Clean Technologies and Environmental Policy, vol. 7, no. 3, pp. 154-161, 2005.
  31. Prakash R., and Shenoy U. V., “Targeting and design of water networks for fixed flowrate and fixed contaminant load operations,” Chemical Engineering Science, vol. 60, no. 1, pp. 255-268, 2005.
  32. Agrawal V., and Shenoy U. V., “Unified conceptual approach to targeting and design of water and hydrogen networks,” AIChE Journal, vol. 52, no. 3, pp. 1071-1082, 2006.
  33. Wan Alwi S. R., and Manan Z. A., “Generic graphical technique for simultaneous targeting and design of water networks,” Industrial & engineering chemistry research, vol. 47, no. 8, pp. 2762-2777, 2008.
  34. Bagajewicz M., “A review of recent design procedures for water networks in refineries and process plants,” Computers & chemical engineering, vol. 24, no. 9, pp. 2093-2113, 2000.
  35. TAKAMA N., KURIYAMA T., SHIROKO K., and UMEDA T., “Optimal planning of water allocation in industry,” Journal of Chemical Engineering of Japan, vol. 13, no. 6, pp. 478-483, 1980.
  36. Doyle S., and Smith R., “Targeting water reuse with multiple contaminants,” Process safety and environmental protection, vol. 75, no. 3, pp. 181-189, 1997.
  37. Galan B., and Grossmann I., “Optimization strategies for the design and synthesis of distributed wastewater treatment networks,” Computers & Chemical Engineering, vol. 23, pp. S161-S164, 1999.
  38. Bagajewicz M., and Savelski M., “On the use of linear models for the design of water utilization systems in process plants with a single contaminant,” Chemical engineering research and design, vol. 79, no. 5, pp. 600-610, 2001.
  39. Karuppiah R., and Grossmann I. E., “Global optimization for the synthesis of integrated water systems in chemical processes,” Computers & Chemical Engineering, vol. 30, no. 4, pp. 650-673, 2006.
  40. Faria D. C., and Bagajewicz M. J., “Novel bound contraction procedure for global optimization of bilinear MINLP problems with applications to water management problems,” Computers & chemical engineering, vol. 35, no. 3, pp. 446-455, 2011.
  41. Huang C.-H., Chang C.-T., Ling H.-C., and Chang C.-C., “A mathematical programming model for water usage and treatment network design,” Industrial & Engineering Chemistry Research, vol. 38, no. 7, pp. 2666-2679, 1999.
  42. Meyer C. A., and Floudas C. A., “Global optimization of a combinatorially complex generalized pooling problem,” AIChE journal, vol. 52, no. 3, pp. 1027-1037, 2006.
  43. Tan R. R., Ng D. K., Foo D. C., and Aviso K. B., “A superstructure model for the synthesis of single-contaminant water networks with partitioning regenerators,” Process Safety and Environmental Protection, vol. 87, no. 3, pp. 197-205, 2009.
  44. Smith R., "Chemical process: design and integration": John Wiley & Sons, 2005.
  45. Mohammadnejad S., Ataei A., Bidhendi G. R. N., Mehrdadi N., Ebadati F., and Lotfi F., “Water pinch analysis for water and wastewater minimization in Tehran oil refinery considering three contaminants,” Environmental monitoring and assessment, vol. 184, no. 5, pp. 2709-2728, 2012.
  46. صراف زاده م. ح. ، رضایی ب. ، و نخعی ع. ، "استفاده مجدد از آب تولیدی در میادین نفت و گاز"، فصلنامه علمی ترویجی فرآیند نو، 54، 15-5، 1395.
  47. محمد نژاد ش.، "تعیین الگوی مناسب کمینه سازی مصرف آب و تولید پساب در صنعت با در نظر گرفتن ملاحظات اقتصادی (مطالعه موردی پالایشگاه نفت تهران)"، پایان نامه دکتری تخصصی، دانشگاه تهران، ایران، 1389.
  48. Alva-Argáez A., Kokossis A. C., and Smith R., “The design of water-using systems in petroleum refining using a water-pinch decomposition,” Chemical Engineering Journal, vol. 128, no. 1, pp. 33-46, 2007.
  49. Mughees W., and Al-Ahmad M., “Application of water pinch technology in minimization of water consumption at a refinery,” Computers & Chemical Engineering, vol. 7, pp. 34-42, 2015.
  50. Deng C., Shi C., Feng X., and Foo D. C. Y., “Flow rate targeting for concentration-and property-based total water network with multiple partitioning interception units,” Industrial & Engineering Chemistry Research, vol. 55, no. 7, pp. 1965-1979, 2016.