ساخت جاذب دولومیتی فرآوری شده با کیتوسان و گرافن اکساید به‌منظور حذف متیلن بلو از آب

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی مقطع کارشناسی، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، تهران

2 استادیار، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، تهران

چکیده

در این پژوهش، ابتدا سنگ معدن دولومیت تهیه شد و پس از طی مراحل خردایش، غربال کردن و شستشو با آب مقطر، در دمای 900 درجه سانتی‌گراد کلسینه شد. دولومیت کلسینه شده به‌وسیله محلول کیتوسان و گرافن اکساید به‌منظور ساخت جاذب کامپوزیتی فرآوری شد و به‌عنوان یک جاذب جدید در حذف متیلن بلو (رنگ کاتیونی) از آب مورد استفاده قرار گرفت. تأثیر زمان، غلظت اولیه رنگ، pH و دما بر میزان ظرفیت جذب جاذب ساخته شده در حذف رنگ بررسی شد. نتایج به‌دست‌آمده به‌وسیله ایزوترم‌های فرندلیچ و لانگمویر و همچنین مدل‌های سینتیکی شبه مرتبه اول و دوم مورد تحلیل و بررسی قرار گرفت. نتایج حاصل از آزمایش‌های جذب سطحی نشان داد جاذب کامپوزیتی برای حذف رنگ کاتیونی متیلن بلو، از ایزوترم جذب لانگمویر و مدل سینتیکی شبه مرتبه دوم به‌خوبی تبعیت می‌کند. بر اساس ایزوترم لانگمویر، حداکثر ظرفیت جذب تک لایه متیلن بلو بر سطح جاذب کامپوزیتی برابر با 3/746 میلی‌گرم بر گرم به دست آمد. این جاذب در دماهای بالا و pH های قلیایی ظرفیت جذب بالاتری نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication of dolomite adsorbent processed with chitosan and graphene oxide for methylene blue removal from water

نویسندگان [English]

  • Amir Hossein Tajic 1
  • Mohsen Maleki 1
  • Abolfazl Ghashghaei 1
  • Maryam Ahmadzadeh Tofighy 2
1 Bachelor’s student, Gas, Petroleum and Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
2 Assistant Professor, Gas, Petroleum and Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In this study, a new composite adsorbent based on dolomite mineral, coated with chitosan and graphene oxide was fabricated and used for removal of methylene blue (MB) from water. The effects of time, initial MB concentration, pH and temperature on the adsorption capacity of the fabricated composite adsorbent in the removal of MB as a cationic dye were investigated. The obtained results were analyzed by Freundlich and Langmuir isotherm models as well as pseudo first and second order kinetic models. The results of adsorption experiments showed that the fabricated composite adsorbent for removing MB follows the Langmuir adsorption isotherm model and the pseudo second order kinetic model. According to the Langmuir isotherm, the maximum monolayer adsorption capacity of MB on the surface of the composite adsorbent is equal to 3.746 mg/g. This adsorbent has a higher adsorption capacity at high temperatures and alkaline pHs.

کلیدواژه‌ها [English]

  • Adsorption
  • Dolomite
  • Water Treatment
  • Methylene Blue
  • Chitosan
  • Graphene Oxide
[1] D. Lan, H. Zhu, J. Zhang, S. Li, Q. Chen, C. Wang, T. Wu, M. Xu, "Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives", Chemosphere, 293. 133464, 2022
[2] R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, J. Sun, "A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety", Ecotoxicology and Environmental Safety, 231. 113160, 2022
[3] F. Behdarvand, E. Valamohammadi, M.A. Tofighy, T. Mohammadi, "Polyvinyl alcohol/polyethersulfone thin-film nanocomposite membranes with carbon nanomaterials incorporated in substrate for water treatment", Journal of Environmental Chemical Engineering, 9. 104650, 2021
[4] E. Abdollahi, A. Heidari, T. Mohammadi, A.A. Asadi, M.A. Tofighy, "Application of Mg-Al LDH nanoparticles to enhance flux, hydrophilicity and antifouling properties of PVDF ultrafiltration membrane: Experimental and modeling studies", Separation and Purification Technology, 257. 117931, 2021
[5] M.A. Tofighy, T. Mohammadi, "Functional charcoal based nanomaterial with excellent colloidal property for fabrication of polyethersulfone ultrafiltration membrane with improved flux and fouling resistance", Materials Chemistry and Physics, 285. 126167, 2022
[6] I. Tavakol, S. Hadadpour, Z. Shabani, M.A. Tofighy, T. Mohammadi, S. Sahebi, "Synthesis of novel thin film composite (TFC) forward osmosis (FO) membranes incorporated with carboxylated carbon nanofibers (CNFs)", Journal of Environmental Chemical Engineering, 8. 104614, 2020
[7] F. Mashkoor, A. Nasar, "Magsorbents: Potential candidates in wastewater treatment technology – A review on the removal of methylene blue dye", Journal of Magnetism and Magnetic Materials, 500. 166408, 2020
[8] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, "Dye and its removal from aqueous solution by adsorption: a review", Advances in colloid and interface science, 209. pp. 172-184, 2014.
[9] M.F. Chowdhury, S. Khandaker, F. Sarker, A. Islam, M.T. Rahman, M.R. Awual, "Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review", Journal of Molecular Liquids, 318. 114061, 2020
[10] Y. Zhou, J. Lu, Y. Zhou, Y. Liu, "Recent advances for dyes removal using novel adsorbents: a review", Environmental pollution, 252. pp. 352-365, 2019
[11] K.B. Tan, M. Vakili, B.A. Horri, P.E. Poh, A.Z. Abdullah, B. Salamatinia, "Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms", Separation and Purification Technology, 150. pp. 229-242, 2015
[12] S. Tahazadeh, T. Mohammadi, M.A. Tofighy, S. Khanlari, H. Karimi, H.B.M. Emrooz, "Development of cellulose acetate/metal-organic framework derived porous carbon adsorptive membrane for dye removal applications", Journal of Membrane Science, 638. 119692, 2021
[13] C.X.-H. Su, L.W. Low, T.T. Teng, Y.S. Wong, "Combination and hybridisation of treatments in dye wastewater treatment: A review", Journal of Environmental Chemical Engineering, 4. pp. 3618-3631, 2016
[14] T.A. Nguyen, R.-S. Juang, "Treatment of waters and wastewaters containing sulfur dyes: A review", Chemical Engineering Journal, 219. pp. 109-117, 2013
[15] Z. Liu, T.A. Khan, M.A. Islam, U. Tabrez, "A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon", Bioresource Technology, 354. 127168, 2022
[16] M. Ahmadzadeh Tofighy, T. Mohammadi, "Methylene blue adsorption onto granular activated carbon prepared from Harmal seeds residue", Desalination and Water Treatment, 52. pp. 2643-2653, 2014
[17] H. Zhang, W. Liu, C. Han, D. Wei, "Intensify dodecylamine adsorption on magnesite and dolomite surfaces by monohydric alcohols", Applied Surface Science, 444. pp. 729-738, 2018
[18] M. Mohammadi, A. Ghaemi, M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati, "Adsorption of cadmium (II) and nickel (II) on dolomite powder", Desalination and Water Treatment, 53. pp. 149-157, 2015
[19] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, "Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review", Desalination, 280. pp. 1-13, 2011
[20] A. Takhtkouseh, "Removal of lead from aqueous solutions by dolomit wastes", in, M. Sc. Thesis, Dept. of Civil Eng., Isfahan University of Tech., Isfahan. In …, 2008.
[21] J. Warren, "Dolomite: occurrence, evolution and economically important associations", Earth-Science Reviews, 52. pp. 1-81, 2000
[22] A.B. Albadarin, C. Mangwandi, H. Ala’a, G.M. Walker, S.J. Allen, M.N. Ahmad, "Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent", Chemical engineering journal, 179. pp. 193-202, 2012
[23] E. Pehlivan, A.M. Özkan, S. Dinç, Ş. Parlayici, "Adsorption of Cu2+ and Pb2+ ion on dolomite powder", Journal of Hazardous Materials, 167. pp. 1044-1049, 2009
[24] C. Mangwandi, A.B. Albadarin, Y. Glocheux, G.M. Walker, "Removal of ortho-phosphate from aqueous solution by adsorption onto dolomite", Journal of Environmental Chemical Engineering, 2. pp. 1123-1130, 2014
[25] A. Ghaemi, M. Torab-Mostaedi, M. Ghannadi-Maragheh, "Characterizations of strontium (II) and barium (II) adsorption from aqueous solutions using dolomite powder", Journal of hazardous materials, 190. pp. 916-921, 2011
[26] G. Walker, L. Hansen, J.-A. Hanna, S. Allen, "Kinetics of a reactive dye adsorption onto dolomitic sorbents", Water Research, 37. pp. 2081-2089, 2003
[27] S. Ziane, F. Bessaha, K. Marouf-Khelifa, A. Khelifa, "Single and binary adsorption of reactive black 5 and Congo red on modified dolomite: Performance and mechanism", Journal of Molecular Liquids, 249. pp. 1245-1253, 2018
[28] F. Boucif, K. Marouf-Khelifa, I. Batonneau-Gener, J. Schott, A. Khelifa, "Preparation, characterisation of thermally treated Algerian dolomite powders and application to azo-dye adsorption", Powder Technology, 201. pp. 277-282, 2010
[29] A.C. Sadiq, A. Olasupo, W.S.W. Ngah, N.Y. Rahim, F.B.M. Suah, "A decade development in the application of chitosan-based materials for dye adsorption: A short review", International Journal of Biological Macromolecules, 191. pp. 1151-1163, 2021
[30] T. Saeed, A. Naeem, I.U. Din, M. Farooq, I.W. Khan, M. Hamayun, T. Malik, "Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach", Journal of Hazardous Materials, 427. 127902, 2022
[31] X. Zhao, X. Wang, T. Lou, "Simultaneous adsorption for cationic and anionic dyes using chitosan/electrospun sodium alginate nanofiber composite sponges", Carbohydrate Polymers, 276. 118728, 2022
[32] M.T. Alsamman, J. Sánchez, "Recent advances on hydrogels based on chitosan and alginate for the adsorption of dyes and metal ions from water", Arabian Journal of Chemistry, 14. 103455, 2021
[33] S. Zarghami, M.A. Tofighy, T. Mohammadi, "Adsorption of zinc and lead ions from aqueous solutions using chitosan/polyvinyl alcohol membrane incorporated via acid-functionalized carbon nanotubes", Journal of Dispersion Science and Technology, 36. pp. 1793-1798, 2015
[34] C. Osagie, A. Othmani, S. Ghosh, A. Malloum, Z.K. Esfahani, S. Ahmadi, "Dyes adsorption from aqueous media through the nanotechnology: A review", Journal of Materials Research and Technology, 14. pp. 2195-2218, 2021
[35] T. Mohammadi, M.A. Tofighy, A. Pak, "Synthesis of carbon nanotubes on macroporous kaolin substrate via a new simple CVD method", International Journal of Chemical Reactor Engineering, 7. 2009.
[36] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, "The chemistry of graphene oxide", Chemical society reviews, 39. pp. 228-240, 2010
[37] W. Yu, L. Sisi, Y. Haiyan, L. Jie, "Progress in the functional modification of graphene/graphene oxide: A review", RSC advances, 10. pp.15328-15345, 2020
[38] G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, "Graphene oxide and its application as an adsorbent for wastewater treatment:, Journal of Chemical Technology & Biotechnology, 89. pp. 196-205, 2014
[39] H. Yan, H. Yang, A. Li, R. Cheng, "pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water", Chemical Engineering Journal, 284. pp. 1397-1405, 2016
[40] J.H. Chen, H.T. Xing, H.X. Guo, W. Weng, S.R. Hu, S.X. Li, Y.H. Huang, X. Sun, Z.B. Su, "Investigation on the adsorption properties of Cr (VI) ions on a novel graphene oxide (GO) based composite adsorbent", Journal of Materials Chemistry A, 2. pp. 12561-12570, 2014
[41] W. Peng, H. Li, Y. Liu, S. Song, "A review on heavy metal ions adsorption from water by graphene oxide and its composites", Journal of Molecular Liquids, 230. p. 496-504, 2017
[42] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, "Graphene and graphene oxide: synthesis, properties, and applications", Advanced materials, 22. pp. 3906-3924, 2010
[43] K. Sasaki, X. Qiu, Y. Hosomomi, S. Moriyama, T. Hirajima, "Effect of natural dolomite calcination temperature on sorption of borate onto calcined products", Microporous and Mesoporous Materials, 171.pp. 1-8, 2013
[44] H. Britton, S. Gregg, G. Winsor, "The calcination of dolomite. Part I.—The kinetics of the thermal decomposition of calcite and of magnesite", Transactions of the Faraday Society, 48. 63-69, 1952
[45] M.A. Tofighy, T. Mohammadi, "Adsorption of divalent heavy metal ions from water using carbon nanotube sheets", Journal of hazardous materials, 185. pp. 140-147, 2011
[46] A. Stafiej, K. Pyrzynska, "Adsorption of heavy metal ions with carbon nanotubes", Separation and purification technology, 58. pp. 49-52, 2007
[47] S. Lagergren, "Zur theorie der sogenannten adsorption geloster stoffe, Kungliga svenska vetenskapsakademiens". Handlingar, 24. pp. 1-39, 1898
[48] Y.-S. Ho, G. McKay, "Pseudo-second order model for sorption processes", Process biochemistry, 34. pp. 451-465, 1999
[49] K. Zhang, R. Hu, G. Fan, G. Li, "Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors", Sensors and Actuators B: Chemical, 243. pp. 721-730, 2017
[50] Y. Zhao, G. Tian, X. Duan, X. Liang, J. Meng, J. Liang, "Environmental applications of diatomite minerals in removing heavy metals from water", Industrial & Engineering Chemistry Research, 58. pp. 11638-11652, 2019
[51] I. Tan, A. Ahmad, B. Hameed, "Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies", Journal of hazardous materials, 154. pp. 337-346, 2008
[52] S. Figaro, J. Avril, F. Brouers, A. Ouensanga, S. Gaspard, "Adsorption studies of molasse's wastewaters on activated carbon: Modelling with a new fractal kinetic equation and evaluation of kinetic models", Journal of hazardous materials, 161. pp. 649-656, 2009
[53] Z.-C. Di, J. Ding, X.-J. Peng, Y.-H. Li, Z.-K. Luan, J. Liang, "Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles", Chemosphere, 62. pp. 861-865, 2006
[54] S. Yang, J. Li, D. Shao, J. Hu, X. Wang, "Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA", Journal of hazardous materials, 166. pp. 109-116, 2009
[55] M.H. Karaoğlu, M. Doğan, M. Alkan, "Kinetic analysis of reactive blue 221 adsorption on kaolinite", Desalination, 256. pp. 154-165, 2010