تولید سوخت‌های میان تقطیر از گاز سنتز با بکارگیری نانوکاتالیست کبالت بر پایه زغال زیستی ماکروجلبک گراسیلاریا گراسیلیس

نوع مقاله : پژوهشی

نویسندگان

1 دکتری شیمی کاربردی ، دانشکده شیمی، دانشگاه تهران، تهران

2 کارشناسی ارشد شیمی کاربردی ، دانشکده شیمی، دانشگاه تهران، تهران

3 کارشناسی ارشد مهندسی شیمی ، دانشکده مهندسی شیمی، دانشگاه تهران، تهران

4 کارشناسی ارشد ریاضی کاربردی ، دانشکده ریاضی، دانشگاه حکیم سبزواری، سبزوار

5 استاد مهندسی شیمی ، دانشکده شیمی، دانشگاه تهران، تهران

چکیده

این مطالعه به بررسی کاربرد زغال زیستی حاصل از پیرولیز ماکروجلبک گراسیلاریا گراسیلیس به عنوان پایه کاتالیست برای تولید سوخت­های میان تقطیر می‌پردازد. برای این منظور، ماکروجلبک پس از آماده­سازی، در دمای 550 درجه سانتیگراد پیرولیز و محصولات حاصل مورد ارزیابی قرار گرفت. محصول عمده پیرولیز، زغال زیستی بود (%40/1). محصول گازی بیشتر حاوی کربن دی­اکسید (%51/9) و هیدروژن (%26/3) و محصول مایع عمدتا حاوی ترکیبات اکسیژنه و نیتروژنه بود. زغال زیستی حاصل پس از فعالسازی با 15درصد فلز کبالت به روش تلقیح بارگذاری شد و بعنوان کاتالیست فرآیند فیشر-تروپش در شرایط فلوی گاز سنتز  45ml/min(H2/CO=2)، فشار 18 بارو دمای 220 درجه سانتیگراد بکار گرفته شد. نتایج نشان داد که درصد تبدیل کربن مونوکسید %64/2 و بیشترین انتخاب­ پذیری محصول مربوط به هیدروکربن­های سنگین (%74) بود، درحالیکه انتخاب ­پذیری محصول جانبی کربن دی ­اکسید برابر با % 2/3 بوده است. ویژگی شناسی کاتالیست با روش­ های BET، XRD ، TPR، TGA و TEM انجام شد.

کلیدواژه‌ها


عنوان مقاله [English]

Production of mid-distillation fuels from syngas using cobalt nanocatalyst supported on Gracilaria gracilis macroalgae biochar

نویسندگان [English]

  • Mokhtar Akhound Babatabar 1
  • Ali Kharazi 2
  • Melika Eshaghi 2
  • Mahshid Vaghar Mousavi 3
  • Hamid Abbasi 4
  • Ahmad Tavasoli 5
1 PhD in Applied Chemistry, Faculty of Chemistry, University of Tehran, Tehran
2 Master of Applied Chemistry, Faculty of Chemistry, University of Tehran, Tehran
3 Master of Chemical Engineering, Faculty of Chemical Engineering, University of Tehran, Tehran
4 Master of Applied Mathematics, Faculty of Mathematics, University of Hakim Sabzevari, Sabzevar
5 Professor of Chemical Engineering, Faculty of Chemistry, University of Tehran, Tehran
چکیده [English]

This study investigates the application of biochar from the macroalgae pyrolysis of Gracylaria gracilis as catalyst support for the production of mid-distillation fuels. Macroalgae were pyrolyzed at 550 °C, and the resulting products were evaluated. The major product of the pyrolysis was biochar (40.1%). The gaseous product mostly contained carbon dioxide (51.9%) and hydrogen (26.3%), and the liquid product mainly contained oxygenate and nitrogenate compounds. The abtained biochar was activated and impregnated with 15% cobalt and then used as a catalyst in the Fisher-Tropesh process under conditions of syngas flow of 45 ml/min (H2/CO = 2), 18 bar pressure and temperature of 220 °C. The results showed that carbon monoxide conversion was 64.2%, and the highest product selectivity was for heavy hydrocarbons (74%), while the selectivity of carbon dioxide as a by-product was 2.3%. Catalyst characterization was performed by BET, XRD, TPR, TGA and TEM methods.

کلیدواژه‌ها [English]

  • Pyrolysis
  • Gracilaria Gracilis Macroalgae
  • Biochar
  • Cobalt Catalyst
  • Fischer-Tropsch
[1] W. Qian, H. Zhang, W. Ying, D. Fang. "The comprehensive kinetics of Fischer–Tropsch synthesis over a Co/AC catalyst on the basis of CO insertion mechanism", Chemical Engineering Journal, 228,  pp. 526-34, 2013.
[2] Z. Qi, L. Chen, S. Zhang, J. Su, G.A. Somorjai. "A mini review of cobalt-based nanocatalyst in Fischer-Tropsch synthesis", Applied Catalysis A: General, 602, 117701, 2020.
[3] F. Rodriguez-Reinoso, "The role of carbon materials in heterogeneous catalysis", Carbon. 36, pp. 159-75, 1998.
[4] Y. Li, W. Lu, Z. Zhao, M. Zhao, Y. Lyu, L. Gong, et al. "Tuning surface oxygen group concentration of carbon supports to promote Fischer-Tropsch synthesis", Applied Catalysis A: General, 613, 118017, 2021.
[5] A.C. Ghogia, A. Nzihou, P. Serp, K. Soulantica, D. Pham Minh, "Cobalt catalysts on carbon-based materials for Fischer-Tropsch synthesis: a review", Applied Catalysis A: General, 609, 117906, 2021.
[6] T. Fu, Z. Li., "Review of recent development in Co-based catalysts supported on carbon materials for Fischer–Tropsch synthesis", Chemical Engineering Science 135, pp. 3-20, 2015.
[7] G. Binda, D. Spanu, R. Bettinetti, L. Magagnin, A. Pozzi, C. Dossi., "Comprehensive comparison of microalgae-derived biochar from different feedstocks: A prospective study for future environmental applications", Algal Research, 52, 102103, 2020.
[8] S. Wang, G. Dai, H. Yang, Z. Luo. "Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review", Progress in Energy and Combustion Science, 62, pp. 33-86, 2017.
[9] Q. Yan, C. Wan, J. Liu, J. Gao, F. Yu, J. Zhang, et al., "Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons", Green Chemistry, 15, 1631, 2013.
[10] B. Zhang, L. Wang, R. Hasan, A. Shahbazi., "Characterization of a native algae species chlamydomonas debaryana: Strain selection, bioremediation ability, and lipid characterization", BioResources, 9, pp. 6130-40, 2014.
[11] S. Jung, D. Rickert, N. Deak, E. Aldin, J. Recknor, L. Johnson, et al. "Comparison of Kjeldahl and Dumas methods for determining protein contents of soybean products", Journal of the American Oil Chemists' Society, 80, pp. 1169-73, 2003.
[12] H. Nikkhah, A. Tavasoli, S. Jafarian., "Investigating the influence of acid washing pretreatment and Zn/activated biochar catalyst on thermal conversion of Cladophora glomerata to value-added bio-products", Energy Conversion and Management, 225, 113392, 2020.
[13] O. Norouzi, S. Jafarian, F. Safari, A. Tavasoli, B. Nejati., "Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char", Bioresour Technol, 219, pp. 643-51, 2016.
[14] V. Dhyani, T. Bhaskar. "A comprehensive review on the pyrolysis of lignocellulosic biomass", Renewable Energy, 129, pp. 695-716, 2018.
[15] C. Yang, R. Li, B. Zhang, Q. Qiu, B. Wang, H. Yang, et al., "Pyrolysis of microalgae: A critical review", Fuel Processing Technology, 186, pp. 53-72, 2019.
[16] T. Yuan, A. Tahmasebi, J. Yu., "Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor", Bioresour Technol, 175, pp. 333-41, 2015.
[17] M. Gholizadeh, X. Hu, Q. Liu., "A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses", Renewable and Sustainable Energy Reviews, 114, 109313, 2019.
[18] S. Jafarian, A. Tavasoli, H. Nikkhah., "Catalytic hydrotreating of pyro-oil derived from green microalgae spirulina the (Arthrospira) plantensis over NiMo catalysts impregnated over a novel hybrid support", International Journal of Hydrogen Energy, 44, 19855-67, 2019.
[19] X.J. Lee, H.C. Ong, Y.Y. Gan, W.-H. Chen, T.M.I. Mahlia, "State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production", Energy Conversion and Management, 210, 112707, 2020.
[20] A. Tavasoli, S. Karimi, S. Taghavi, Z. Zolfaghari, H. Amirfirouzkouhi, "Comparing the deactivation behaviour of Co/CNT and Co/γ-Al2O3 nano catalysts in Fischer-Tropsch synthesis", Journal of Natural Gas Chemistry, 21, pp. 605-13, 2012.
[21] V. Benedetti, S.S. Ail, F. Patuzzi, D. Cristofori, R. Rauch, M. Baratieri, "Investigating the feasibility of valorizing residual char from biomass gasification as catalyst support in Fischer-Tropsch synthesis", Renewable Energy, 147, pp. 884-94, 2020.
[22] S. Karimi, A. Tavasoli, Y. Mortazavi, A. Karimi, "Cobalt supported on Graphene – A promising novel Fischer–Tropsch synthesis catalyst", Applied Catalysis A: General, 499, pp. 188-96, 2015.
[23] M. Zaman, A. Khodadi, Y. Mortazavi, "Fischer–Tropsch synthesis over cobalt dispersed on carbon nanotubes-based supports and activated carbon", Fuel Processing Technology, 90, pp. 1214-9, 2009.
[24] L. Chen, G. Song, Y. Fu, J. Shen, "The effects of promoters of K and Zr on the mesoporous carbon supported cobalt catalysts for Fischer–Tropsch synthesis", Journal of Colloid and Interface Science, 368, pp. 456-61, 2012.
[25] Y. Pei, S. Jian, Y. Chen, C. Wang, "Synthesis of higher alcohols by the Fischer–Tropsch reaction over activated carbon supported CoCuMn catalysts", RSC Advances, 5, pp. 76330-6, 2015.
[26] Y. Pei, Y. Ding, H. Zhu, H. Du., "One-step production of C1–C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2", Chinese Journal of Catalysis, 36,  pp. 355-61, 2015.
[27] A. Karimi, B. Nasernejad, A.M. Rashidi, "Particle size control effect on activity and selectivity of functionalized CNT-supported cobalt catalyst in Fischer-Tropsch synthesis", Korean Journal of Chemical Engineering, 29, pp. 1516-24, 2012.