شبیه‌سازی و بهبود فرآیند بیوگاز براساس استفاده از حلال مونواتانول آمین

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی دانشگاه دولتی سیستان و بلوچستان، زاهدان، ایران

2 استادیار دانشکده شهید نیکبخت دانشگاه دولتی سیستان و بلوچستان، زاهدان، ایران

3 استاد دانشکده شهید نیکبخت دانشگاه دولتی سیستان و بلوجستان،زاهدان،ایران

چکیده

بیوگاز یک منبع انرژی پایدار است که از هضم بی هوازی پسماندهای آلی تولید می­شود. بیوگاز خام را می­توان برای  تولید برق مصرف کرد، ولی از آنجا که محتوای انرژی بیوگاز با غلظت متان نسبت مستقیم دارد، لذا برای تزریق به شبکه گاز باید بیوگاز را بهبود داد و دی اکسید کربن و سایر نا خالص­ ها را حذف کرد. در این مقاله یک فرآیند برای بهبود بیوگاز براساس فشرده­سازی بخار کم فشار ارائه شده که همراه با انبساط حلال تمیز خروجی از ریبویلر برج بازیابی حلال و ارسال بخار گرم متراکم به ریبویلر بهینه­سازی گردیده است. دو حالت متداول و بهینه توسط نرم­افزار اسپن هایسیس بر­اساس حلال­های آمین خالص شبیه­سازی شده است. نتایج بدست آمده حاکی از افزایش بازیابی مقدار دی اکسید کربن و کاهش بارحرارتی ریبویلر برج دفع به مقدار  3/62 بود که در مقایسه با فرآیند مبنا 28/74 درصدکاهش داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation and improvement of biogas process using monoethanolamine solvent

نویسندگان [English]

  • Hamed Salehi 1
  • mir mohammad Khalilipour 2
  • Farhad Shahraki 3
1 MSc student of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
2 Professor Assistant in Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
3 Professor of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

Biogas is a sustainable energy source produced from organic waste. Raw biogas can be used to generate electricity, but since the energy content of biogas is directly related to methane concentration, it is necessary to improve the biogas and remove its carbon dioxide and other impurities to inject it into the gas grid. This article represents the biogas-improving process based on low-pressure steam compression, which is optimized with an expansion of the clean solvent exiting from the reboiler of the solvent recovery tower, and sending dense hot steam to the reboiler. Two common and optimal modes have been simulated by Aspan-Hasys software based on pure amine solvents. The obtained results showed an increase in the amount of carbon dioxide recovery, and a decrease in the heat load of the reboiler of the disposal tower to the amount of 3.62 GJ/tCO2, which is a 28.74% reduction compared to the base process.

کلیدواژه‌ها [English]

  • Biogas
  • Simulation
  • Biomethane
  • Environment
  • Mono Ethanol Amine
[1] IEA. IEA Bioenergy Task 37 Country Reports Summary 2014. 2015.
[2] Network-REN21 REP, “Renewables 2018 Global Status Report,” REN21 Secretariat, Paris, 2018.
[3] Tybirk K, Solberg FE, Wennerberg P, Wiese F, Danielsen CG. Biogas Liquefaction and use of Liquid Biomethane. Status on the market and technologies available for LNG/LBG/LBM of relevance for biogas actors in 2017.
[4] Angelidaki I, et al. “Biogas upgrading and utilization: current status and perspectives”, Biotechnol Adv, 36(2): pp. 452–66, 2018.
[5] Austbo B, Lovseth SW, Gundersen T, “Annotated bibliography—use of optimization in LNG process design and operation”, Comput. Chem. Eng., 71(Supplement C): pp. 391–414, 2014.
[6] J. Pavicic, K. Novak Mavar, V. Brkic and K. Simon, “Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe”, Energies, 15, 2940, 2022.
[7] Navigant Research. Renewable Biogas - Methane Recovery and Utilization in Landfills and Anaerobic Digesters: Municipal Solid Waste, Agricultural, Industrial, and Wastewater Market Analysis and Forecasts. Boulder, USA: Navigant Research; 2014.
[8] Navigant Research, Raw Biogas Production Capacity Is Expected to Reach 2,141 Billion Cubic Feet per Year by 2024.
[9] Sun Q, Li H., Yan J., Liu L., Yu Z., Yu X., “Selection of appropriate biogas upgrading technology -a review of biogas cleaning, upgrading and utilization”, Renewable and Sustainable Energy Reviews, 51, pp. 521–532, 2015.
[10] A. Nsair, S. Onen Cinar, A. Alassali, H. Abu Qdais and K. Kuchta, “Operational Parameters of Biogas Plants: A Review and Evaluation Study”, Energies, 13, 3761, 2022.
[11] Rotunno P, Lanzini A, Leone P, “Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel”, Renew Energy, 102(Part B): pp. 417–32, 2017.
[12] L.C. Gopal, M. Govindarajan, M.R. Kavipriya, S. Mahboob, K.A. Al-Ghanim, P. Virik, Z. Ahmed, N. Al-Mulahim, V. Senthilkumaran, V. Shankar, “Optimization strategies for improved biogas production by recycling of waste through response surface methodology and artificial neural network: Sustainable Energy perspective research”, Journal of King Saud University – Science,  2020.
[13] Lange S, Pellegrini LA, Vergani P, Lo Savio M., “Energy and economic analysis of a new low-temperature distillation process for the upgrading of high-CO2 content natural gas streams”, Ind Eng Chem Res, 54(40), pp. 9770–82, 2015.
[14] Vo TTQ, Wall DM, Ring D, Rajendran K, Murphy JD., “Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation”, Appl Energy, 212, pp. 1191–202, 2018.
[15] Nejat T, Movasati A, Wood DA, Ghanbarabadi H., “Simulated exergy and energy performance comparison of physical–chemical and chemical solvents in a sour gas treatment plant”, Chem Eng Res Des , 133, pp. 40–54, 2018.
[16] Pellegrini LA, De Guido G, Lange S., “Biogas to liquefied biomethane via cryogenic upgrading technologies”, Renew Energy, 124(C), pp. 75–83, 2017.
[17] Berstad D, Neksa P, Anantharaman R., “Low-temperature CO2 removal from natural gas”, Energy Procedia, 26, pp. 41–8, 2012.
[18] Yousef AM, Eldrainy YA, El-Maghlany WM, “Attia A. Upgrading biogas by a lowtemperature CO2 removal technique”, Alexandria Eng J, 55(2), pp. 1143–50, 2016.
[19] Yousef AM, Eldrainy YA, El-Maghlany WM, Attia A., “Biogas upgrading process via low-temperature CO2 liquefaction and separation”, J Nat Gas Sci Eng., 45, pp. 812–24, 2017.
[20] Lange S, Baccanelli M, Rocco MV, Pellegrini LA, Colombo E., “Low temperature techniques for natural gas purification and LNG production: an energy and exergy analysis”, Appl Energy, 180(Supplement C), pp. 546–59, 2016.
[21] Batteux J, Godard A, “Process and installation for regenerating an absorbent solution containing gaseous compounds”, Patent No.US 4384875 A1, 1983.
[22] Reddy S, Gilmartin J, Francuz V, “Integrated compressor/stripper configurations and methods”, Patent No. WO/2007/ 075466, Fluor Technologies Corporation, 2007.
[23] Van Wagener DH, Rochelle GT, ‘Stripper configurations for CO2 capture by aqueous monoethanolamine”, Chem Eng Res Des 89(9), pp. 1639–1646, 2011.
[24] Solomon Aforkoghene Aromada, Lars Erik Øi, “Energy and Economic Analysis of Improved Absorption Configurations for CO2 Capture”, Energy Procedia 114, pp. 1342 – 1351, 2017.
[25] Lars Erik Øi, Terje Bråthen1, Christian Berg, Sven Ketil Brekne, Marius Flatin, Ronny Johnsen, Iselin Grauer Moen, Erik Thomassen, “Optimization of configurations for amine based CO2 absorption using Aspen HYSYS”, Energy Procedia 51, pp. 224 – 233, 2014.
[26] Boyang Xue , Yanmei Yu , Jian Chen , Xiaobo Luo ,Meihong Wang, “A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations”, Int J Coal Sci Technol.
[27] Rafael Oliveira dos Santos, Lizandro de Sousa Santos, Diego Martinez Prata, “Simulation and optimization of a methanol synthesis process from different biogas sources”, Journal of Cleaner Production 186, pp. 821-830, 2018.
[28] Sarcheshmehpoor M., “Evaluation of a gas refinery using exergy-based methods”, zur Erlangung des akademischen Grades, Berlin, 2019.
[29] Lionel Dubois and Diane Thomas, “Simulations of various configurations of the post-combustion CO2 capture process applied to a cement plant flue gas: parametric study with different solvents”, Energy Procedia 114, pp. 1409 – 142, 2017.
30- مریم تخت روانچی و همکاران، "بررسی جداسازی دی اکسید کربن در صنعت پتروشیمی با هدف کاهش انتشار گازهای گلخانه­ای"، شرکت ملی صنایع پتروشیمی، شرکت پژوهش و فناوری پتروشیمی، گروه پژوهشهای کاتالیستی.
[31] Tuan B.H. Nguyen, Edwin Zondervan, “Methanol production from captured CO2 using hydrogenation and reforming technologies_environmental and economic evaluation”, Journal of CO Utilization 34, pp. 1–11, 2019.
[32] Long. J, Xuan Z, Long. Z. L.,”Feasibility and mechanism of an amine-looping process for efficient CO2 mineralization using alkaline ashes”, Journal of chemical engineering. 430, pp. 118-133, 2022.
[33] Zheng. W, Wang. N, “New method of kinetic modeling for CO2 absorption into blended amine systems: A case of MEA/EAE/3DEA1P trisolvent blends”, Journal of Separation and purification. 300, pp. 45-57, 2022.