قیاس فنی- اقتصادی فرآیندهای جذب سطحی و تقطیر آزئوتروپیک برای آب‌زدایی از اتانول صنعتی

نوع مقاله : ترویجی

نویسندگان

1 دانشیار مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

2 فارغ التحصیل کارشناسی ارشد مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

3 دانشجوی دکتری مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

چکیده

این پژوهش به مقایسه دو روش مرسوم جذب سطحی با زئولیت و تقطیر آزئوتروپیک برای آب­زدایی از اتانول صنعتی(%95) و تولید اتانول با خلوص %99/8 می­پردازد. بدین منظور، هر دو فرآیند با دبی خوراک مشابه kg/h136 شبیه­سازی شده و با استفاده از تحلیل فنی-اقتصادی، فرآیند مناسب­ انتخاب گردید. نتایج نشان داد که فرآیند جذب سطحی برای آب­گیری از اتانول، اقتصادی­تر از تقطیر آزئوتروپیک است؛ زیرا دارای سرمایه­گذاری کل و قیمت تمام­شده محصول پایین­تری است. میزان تولید در نقطه سربه­سر و مدت­زمان بازگشت سرمایه برای فرآیند جذب سطحی به ترتیب برابر L1,223,800 و 12ماه بوده و برای تقطیر آزئوتروپیک به ترتیب برابر L2,004,905 و 25ماه است. همچنین، سود خالص سالیانه، ارزش خالص طرح و بازده داخلی برای فرآیند جذب سطحی به ترتیب برابر 413,456دلار، 1,181,279دلار و %276 است که بسیار بالاتر از ارقام بدست­آمده برای فرآیند تقطیر آزئوتروپیک (به ترتیب برابر با 263,925 دلار، 979,370 دلار و %87) است.

کلیدواژه‌ها


عنوان مقاله [English]

Techno-economic comparison of adsorption and azeotropic distillation processes for industrial ethanol dehydration

نویسندگان [English]

  • Ehsan Salehi 1
  • Marzieh Moazzami Goodarzi 2
  • Mahdi Askari 3
1 Associate Professor, Chemical Engineering Department, Arak University, Arak, Iran
2 MSc, Chemical Engineering Department, Arak University, Arak, Iran
3 PhD Student, Chemical Engineering Department, Arak University, Arak, Iran
چکیده [English]

This work compares two conventional methods of adsorption with zeolites and azeotropic distillation for dehydration of industrial ethanol (95%) to produce 99.8% ethanol. To this end, both processes were simulated by a similar feed flowrate of 136kg/h and the suitable alternative was selected using techno-economical study. The results revealed that the adsorption process is more economical than azeotropic distillation for ethanol dehydration, as it possesses lower total investment cost and total product price. The amount of production at break-even point and the investment-return period for the adsorption process were equal to 1223800L and 12 months, respectively, and those for the azeotropic distillation were 2004905L and 25 months, respectively. In addition, the net annual profit, net present value and internal rate-of-return for adsorption process were equal to 413456$, 1181279% and 276%, respectively, which are much higher than those for the azeotropic distillation, equal to 263925$, 979370$ and 87%, respectively.

کلیدواژه‌ها [English]

  • Ethanol Dehydration
  • Simulation
  • Techno-Economic Assessment
  • Adsorption
  • Azeotropic Distillation
[1] V. Gomis, R. Pedraza, M. D. Saquete, A. Font, and J. García-Cano, "Ethanol dehydration via azeotropic distillation with gasoline fractions as entrainers: A pilot-scale study of the manufacture of an ethanol–hydrocarbon fuel blend," Fuel, vol. 139, pp. 568-574, 2015.
[2]       P. Igbokwe, R. Okolomike, and S. Nwokolo, "Zeolite for Drying of Ethanol-Water and Methanol-Water Systems from Nigerian Clay Resource," Journal of the university of Chemical Technology and Metallurgy, vol. 43, pp. 109-112, 2008.
[3]       M. R. Ladisch and K. Dyck, "Dehydration of ethanol: new approach gives positive energy balance," Science, vol. 205, no. 4409, pp. 898-900, 1979.
[4]       Z. Zhu, Y. Ri, M. Li, H. Jia, Y. Wang, and Y. Wang, "Extractive distillation for ethanol dehydration using imidazolium-based ionic liquids as solvents," Chemical Engineering and Processing-Process Intensification, vol. 109, pp. 190-198, 2016.
[5]       W. B. Ramos, M. F. Figueiredo, K. D. Brito, S. Ciannella, L. G. Vasconcelos, and R. P. Brito, "Effect of solvent content and heat integration on the controllability of extractive distillation process for anhydrous ethanol production," Industrial & Engineering Chemistry Research, vol. 55, no. 43, pp. 11315-11328, 2016.
[6]       Q. Li et al., "High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity," Journal of Membrane Science, vol. 544, pp. 68-78, 2017.
[7] E. Ebrahimiaqda and K. L. Ogden, "Simulation and cost analysis of distillation and purification step in production of anhydrous ethanol from sweet sorghum," ACS Sustainable Chemistry & Engineering, vol. 5, no. 8, pp. 6854-6862, 2017.
[8]       J. Lee, J. Szanyi, and J. H. Kwak, "Ethanol dehydration on γ-Al2O3: Effects of partial pressure and temperature," Molecular Catalysis, vol. 434, pp. 39-48, 2017.
[9]       A. S. Amarasekara, Handbook of cellulosic ethanol. John Wiley & Sons, 2013.
[10] S. Ma, Y. Hou, Y. Sun, J. Li, Y. Li, and L. Sun, "Simulation and experiment for ethanol dehydration using low transition temperature mixtures (LTTMs) as entrainers," Chemical Engineering and Processing: Process Intensification, vol. 121, pp. 71-80, 2017.
[11] Q. Kang, J. Huybrechts, B. Van der Bruggen, J. Baeyens, T. Tan, and R. Dewil, "Hydrophilic membranes to replace molecular sieves in dewatering the bio-ethanol/water azeotropic mixture," Separation and Purification Technology, vol. 136, pp. 144-149, 2014.
[12] W. An, Z. Lin, J. Chen, and J. Zhu, "Simulation and analysis of a reactive distillation column for removal of water from ethanol–water mixtures," Industrial & Engineering Chemistry Research, vol. 53, no. 14, pp. 6056-6064, 2014.
[13] D. Kunnakorn et al., "Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water–ethanol separation," Renewable energy, vol. 51, pp. 310-316, 2013.
[14] X. Shang et al., "Process analysis of extractive distillation for the separation of ethanol–water using deep eutectic solvent as entrainer," Chemical Engineering Research and Design, vol. 148, pp. 298-311, 2019.
[15] Y. Tavan and S. H. Hosseini, "A novel integrated process to break the ethanol/water azeotrope using reactive distillation–Part I: Parametric study," Separation and Purification Technology, vol. 118, pp. 455-462, 2013.
[16] V. Gomis, R. Pedraza, O. Francés, A. Font, and J. C. Asensi, "Dehydration of ethanol using azeotropic distillation with isooctane," Industrial & engineering chemistry research, vol. 46, no. 13, pp. 4572-4576, 2007.
[17] W. L. Luyben, "Economic optimum design of the heterogeneous azeotropic dehydration of ethanol," Industrial & engineering chemistry research, vol. 51, no. 50, pp. 16427-16432, 2012.
[18] H. Chang, X.-G. Yuan, H. Tian, and A.-W. Zeng, "Experimental study on the adsorption of water and ethanol by cornmeal for ethanol dehydration," Industrial & engineering chemistry research, vol. 45, no. 11, pp. 3916-3921, 2006.
[19] L. Lu, Q. Shao, L. Huang, and X. Lu, "Simulation of adsorption and separation of ethanol–water mixture with zeolite and carbon nanotube," Fluid Phase Equilibria, vol. 261, no. 1-2, pp. 191-198, 2007.
[20] J. A. Quintero and C. A. Cardona, "Ethanol dehydration by adsorption with starchy and cellulosic materials," Industrial & engineering chemistry research, vol. 48, no. 14, pp. 6783-6788, 2009.
[21] M. Simo, S. Sivashanmugam, C. J. Brown, and V. Hlavacek, "Adsorption/desorption of water and ethanol on 3A zeolite in near-adiabatic fixed bed," Industrial & Engineering Chemistry Research, vol. 48, no. 20, pp. 9247-9260, 2009.
[22] T. Yamamoto, Y. H. Kim, B. C. Kim, A. Endo, N. Thongprachan, and T. Ohmori, "Adsorption characteristics of zeolites for dehydration of ethanol: Evaluation of diffusivity of water in porous structure," Chemical Engineering Journal, vol. 181, pp. 443-448, 2012.
[23] A. Arshad, "Net present value is better than internal rate of return," Interdisciplinary journal of contemporary research in business, vol. 4, no. 8, pp. 211-219, 2012.
[24] H. Gaspars-Wieloch, "Project net present value estimation under uncertainty," Central European Journal of Operations Research, vol. 27, no. 1, pp. 179-197, 2019.
[25] M. S. Peters, K. D. Timmerhaus, and R. E. West, Plant design and economics for chemical engineers. McGraw-hill New York, 2003.