بررسی مدیریت تولید و بهینه سازی گاز هیدروژن

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استادیار، گروه مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 استاد، گروه مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

4 مهندس پالایش سوخت و احتراق، شرکت پالایش نفت آبادان، آبادان، ایران

چکیده

واحدهای شکست نفت خام سنگین (هیدروکراکر) و گوگردزدایی از نفت خام (هیدروتریتر) دو واحد مهم مصرف کننده هیدروژن در پالایشگاه هستند. عواملی تاثیر گذاری همچون واحدهای مصرف کننده هیدروژن و قوانین زیست محیطی، نیاز به بهینه سازی شبکه هیدروژن در پالایشگاه را افزایش می­دهد. در این مقاله قصد داریم با استفاده از روش ابر ساختار بهینه ترین ساختار شبکه هیدروژن در پالایشگاه آبادان را به دست آوریم. روش ابر ساختار شامل مدلی ریاضی که قادر به تأمین هیدروژن مورد نیاز مصرف کننده­ها و نیز طراحی شبکه بهینه­ی هیدروژن با کمترین هزینه می­باشد. نتایج بعد از بهینه سازی، استفاده مجدد از هیدوژن دو جریان RPS CRU و COLD-SEP CRU که قبل از بهینه سازی به سیستم سوخت ارسال می­گردید، را نشان می­دهد. مقدار جریان RPS CRU و COLD-SEP CRU به ترتیب 5000 و 3600 (kg/h) با خلوص نسبتا بالا از هیدروژن، برای بازیابی به تصفیه کننده PSA فرستاده می­شود. همچنین بنا بر نتایج شبیه سازی نیازی به واحد تولید هیدروژن (U-57) نبوده و هزینه خرید واحد تولید هیدروژن از شبکه حذف می­گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Production Management and Optimization of Hydrogen Gas

نویسندگان [English]

  • Parvaneh Naroui Mohammad 1
  • mir mohammad Khalilipour 2
  • Farhad Shahraki 3
  • Mohammad Reza Sardashti Birjandi 2
  • Mahmood Jamili 4
1 M.Sc Student, Department of Chemical Engineering, Shahid Nikbakht Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
2 Assistant Professor, Department of Chemical Engineering, Shahid Nikbakht Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
3 Professor Department of Chemical Engineering, Shahid Nikbakht Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
4 Fuel refining and combustion engineer, Abadan oil refining company
چکیده [English]

Heavy crude oil cracking units (hydrocracker) and crude oil desulfurization (hydrotreater) are the two most important hydrogen-consuming units in the refinery. Affected parameters such as hydrogen consuming units and environmental rules increase the necessity of optimization the hydrogen network in the refinery. In this article, we intend to obtain the optimal hydrogen network structure in Abadan Refinery using the superstructure method. The superstructure method includes a mathematical model that is able to provide the hydrogen necessity by consumers and design the optimal hydrogen network with the lowest cost. The results of optimization show the hydrogen from RPS CRU and COLD-SEP CRU streams, which were sent to the fuel system before optimization can be recovered and reused in the network. RPS CRU and COLD-SEP CRU flow rates of 5000 and 3600 (kg/h), respectively, with relatively high purity of hydrogen, can be sent to the PSA purifier for the recovery. In addition, regarding to the recovery there is no necessity to utilize the hydrogen production unit (U-57) and it will be taken out of service, and as a result, the purchase cost of the hydrogen production unit will be removed from the network.

کلیدواژه‌ها [English]

  • Refinery
  • Optimization
  • Hydrogen Network
  • Hydrogen Recovery
  • Pressure Swing Adsorption (PSA)
[2] A. Mahmoud, A.S.M. Adam, J. Sunarso, S. Liu, “Modeling and optimization of refinery hydrogen network – a new strategy to linearize power equation of new compressor”, Asia-Pac. J. Chem. Eng, 2017. Published online in Wiley Online Library, DOI: 10.1002/apj.2131.
[3] M. Khajehpour, F. Farhadi, M.R. Pishvaie, “Nonlinear Optimization of Hydrogen Management of Refinery”. Master's Thesis to Sharif University of Technology, Tehran, Iran, 2008.
[4] F. Thomas Edgar, D.M. Himmelblau, “Optimization of chemical processes”. McGraw-Hill, 2001.
[5] Q. Zhang, G. Liu, X. Feng, K.H. Chu, C. Deng, “Hydrogen networks synthesis considering separation performance of purifiers”. Int. J. Hydrogen Energy, Vol. 39(16), pp. 8357-8373, 2014.
[6] G.P. Towler, R. Mann, A.J.L. Serriere, C.M.D. Gabaude, “Refinery hydrogen management: cost analysis of chemically integrated facilities”. Ind Eng Chem Res, Vol. 35, pp. 2378-2388, 1996.
[7] J.J. Alves, “Analysis and Design of Refinery Hydrogen Distribution Systems”, Manchester, UK: University of Manchester Institute of Science and Technology; Ph.D. thesis, 1999.
[8] Y. Ding, X. Feng, K.H. Chu, “Optimization of hydrogen distribution systems with pressure constraints”. J Clean Prod, Vol. 19, pp. 204-211, 2011.
[9] D.C.Y. Foo, Z.A. Manan, “Setting the minimum utility gas flowrate targets using cascade analysis technique”. Ind Eng Chem Res, Vol. 45, pp. 5986-5995, 2006.
[10] Z. Zhao, G. Liu, X. Feng, “The integration of the hydrogen distribution system with multiple impurities”. Chem Eng Res Des, Vol. 85, pp. 1295-1304, 2007.
[11] J.J. Alves, G.P. Towler, “Analysis of refinery hydrogen distribution systems”, Ind Eng Chem Res, Vol. 41, pp. 5759-5769, 2002.
[12] N. Hallale, F. Liu, “Refinery hydrogen management for clean fuels production”, Adv Environ Res, Vol. 6, pp. 81-98, 2001.
[13] F. Liu, N. Hallale, R. Gani, S.B. Jorgensen, “Retrofit of refinery hydrogen systems”, European Symposium on Computer Aided Process Engineering, pp. 445-50, 2001.
[14] F. Liu, N. Zhang, “Strategy of purifier selection and integration in hydrogen networks”, Chem Eng Res Des, Vol. 82, pp. 1315-1330, 2004.
[15] J.P. Marques, H.A. Matos, N.M.C. Oliveira, C.P. Nunes, “State-of-the-art review of targeting and design methodologies for hydrogen network synthesis”, International Journal of Hydrogen Energy, Vol. 42(1), pp. 376-404, 2017.
[16] M.I. Ahmad, N. Zhang, M. Jobson, “Modelling and optimization for design of hydrogen networks for multi-period operation”. J Clean Prod, Vol. 18, pp. 889-899, 2010.
[17] C.C. Kuo, C.T. Chang, “Improved model formulations for multiperiod hydrogen network designs”. Ind Eng Chem Res, Vol. 53, pp. 20204-20222, 2014.
[18] C.T. Chang, C.C. Kuo, “Improved design strategies for flexible hydrogen networks”. Computer Aided Chemical Engineering, Vol. 37, pp. 1007-1012, 2015.
[19] Y. Jiao, H. Su, W. Hou, “Improved optimization methods for refinery hydrogen network and their applications”. Control Eng Pract, Vol. 20, pp. 1075-1093, 2012.
[20] C. Deng, H. Pan, Y. Li, Y. Zhou, X. Feng, “Comparative analysis of different scenarios for the synthesis of refinery hydrogen network”. Appl Therm Eng, Vol. 70, pp. 1162-1179, 2014.
[21] C. Deng, W. Li, X. Feng, “Refinery hydrogen network management with key factor analysis”, Chem Eng Trans, Vol. 35, pp. 61-66, 2013.
[22] Z. Liao, J. Wang, Y. Yang, G. Rong, “Integrating purifiers in refinery hydrogen networks: a retrofit case study”, J Clean Prod, Vol. 18, pp. 233-241, 2010.
[23] L. Zhou, Z. Liao, J. Wang, B. Jiang, Y. Yang, “Hydrogen sulfide removal process embedded optimization of hydrogen network”, Int J Hydrogen Energy, Vol. 37, pp. 18163-18174, 2012.
[24] L. Zhou, Z. Liao, J. Wang, B. Jiang, Y. Yang, “Simultaneous optimization of hydrogen network with desulfurization processes embedded”, Computer aided chemical engineering. Elsevier, pp. 215-219, 2012.
[25] L. Girardin, F. Marechal, P. Tromeur, W.M.C. Pantelides, “Methodology for the design of industrial hydrogen networks and the optimal placement of purification units using multi-objective optimisation techniques”, Computer aided chemical engineering. Elsevier, pp. 1765-1770, 2006.
[26] S. Wu, Z. Yu, X. Feng, G. Liu, C. Deng, K.H. Chu, “Optimization of refinery hydrogen distribution systems considering the number of compressors”, Energy, Vol. 62, pp. 185-195, 2013.
[27] S. Wu, Y. Wang, X. Feng, “Unified model of purification units in hydrogen networks”, Chin J Chem Eng, Vol. 22, pp. 730-733, 2014.
[28] S. Wu., G. Liu, Z. Yu, X. Feng, Y. Liu, C. Deng, “Optimization of hydrogen networks with constraints on hydrogen concentration and pure hydrogen load considered”, Chem Eng Res Des, Vol. 90, pp. 1208-1220, 2012.
[29] L. Huang, G. Liu, “Optimization for refinery hydrogen networks with detailed reactor-separator-purifier modeling”, Journal of Cleaner Production, Vol. 304, pp. 127136, 2021.
[30] L. Huang, D. Li, N. Li, G. Liu, “A novel mathematical model for integrating the hydrogen network of refinery with compressor allocation considered”, International Journal of Hydrogen Energy, Vol. 47(41), pp. 18067-18079, 2022.
[31] A. Streb, M. Mazzotti, “Performance limits of neural networks for optimizing an adsorption process for hydrogen purification and CO2 capture”, Computers & Chemical Engineering, Vol. 166 pp. 107974, 2022.