Biodesulfurization of Dibenzothiophene by Microorganisms Isolated from Oil-Contaminated Soils

Document Type : Original research

Authors

1 Department of Animal Biology، Faculty of Natural Sciences، University of Tabriz، Tabriz، Iran

2 Associate Professor, Department of Animal Biology، Faculty of Natural Sciences، University of Tabriz، Tabriz، Iran

3 Associate Professor, Department of Earth Sciences، Faculty of Natural Sciences، University of Tabriz، Tabriz، Iran

4 Senior Process Engineer of Abadan Oil Refining Company, Process Engineering Department ، Abadan، Iran

Abstract

Biological desulfurization by microorganisms is a suitable method to remove sulfur containing compounds from fossil fuels. The aim of the present research was to introduce indigenous microorganisms with the ability to biologically remove of sulfur. In order to isolating native microorganisms, oil contaminated soil samples taken from Abadan oil refinery were transferred to the microbiology laboratory. Enrichment of oil-contaminated soil samples was performed during 4 subcultivations in Basal salt culture medium with 0.5 mM dibenzothiophene as the only source of sulfur during which 20 bacterial isolates were obtained. Superior isolates were selected based on growth rate and turbidity caused by the consumption of dibenzothiophene. In order to investigate the possible metabolic pathway of desulfurization in isolates, the most common metabolic pathway of desulfurization, i.e. 4S pathway, was tracked through the Gibbs assay, and the production of blue color could confirm the existence of this pathway in microorganisms. GC-MS method was used to check the amount of dibenzothiophene reduction. Isolates BDS9, BDS18 and BDS37 were able to remove 95.7%, 95.5% and 86.5% of dibenzothiophene over a period of 72 hours, respectively.

Keywords


[1] H. N. Nassar, S. S. Abu Amr, and N. S. El-Gendy, “Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4,” Environ. Sci. Pollut. Res. 2020 287, vol. 28, no. 7, Oct. 2020, pp. 8102–8116.
[2] N. Akhtar, M. A. Ghauri, and K. Akhtar, “Exploring Coal Biodesulfurization Potential of a Novel Organic Sulfur Metabolizing Rhodococcus spp. (Eu-32) – A Case Study,” http://dx.doi.org/10.1080/01490451.2015.1052119, vol. 33, no. 6, Jul. 2016, pp. 468–472.
[3] K. A. Gray, G. T. Mrachkott, and C. H. Squires, “Biodesulfurization of fossil fuels,” Curr. Opin. Microbiol., vol. 6, no. 3, 2003, pp. 229–235.
[4] I. Martínez, M. El-Said Mohamed, V. E. Santos, J. L. García, F. García-Ochoa, and E. Díaz, “Metabolic and process engineering for biodesulfurization in Gram-negative bacteria,” J. Biotechnol., vol. 262, Nov. 2017, pp. 47–55.
[5] C. Canales, J. Eyzaguirre, P. Baeza, P. Aballay, and J. Ojeda, “Kinetic analysis for biodesulfurization of dibenzothiophene using R. rhodochrous adsorbed on silica,” Ecol. Chem. Eng. S, vol. 25, no. 4, Dec. 2018, pp. 549–556.
[6] Y. Delegan, Y. Kocharovskaya, E. Frantsuzova, R. Streletskii, and A. Vetrova, “Characterization and genomic analysis of Gordonia alkanivorans 135, a promising dibenzothiophene-degrading strain,” Biotechnol. Reports, vol. 29, Mar. 2021.
[7] N. Gupta, P. K. Roychoudhury, and J. K. Deb, “Biotechnology of desulfurization of diesel: prospects and challenges,” Appl. Microbiol. Biotechnol., vol. 66, no. 4, Jan. 2005, pp. 356–366.
[8] T. H. Park, K. A. Cychosz, A. G. Wong-Foy, A. Dailly, and A. J. Matzger, “Gas and liquid phase adsorption in isostructural Cu3[biaryltricarboxylate]2 microporous coordination polymers,” Chem. Commun., vol. 47, no. 5, Feb. 2011, pp. 1452–1454.
[9] K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, “Molecular mechanisms of biocatalytic desulfurization of fossil fuels,” Nat. Biotechnol. 1996 1413, vol. 14, no. 13, 1996, pp. 1705–1709.
[10] K. Kodama, “Co-Metabolism of Dibenzothiophene by Pseudomonas jianii,” Agric. Biol. Chem., vol. 41, no. 7, Jul. 1977, pp. 1305–1306.
[11] F. Nazari, M. E. Kefayati, and J. Raheb, “Isolation, identification, and characterization of a novel chemolithoautotrophic bacterium with high potential in biodesulfurization of natural or industrial gasses and biogas,”, vol. 39, no. 10, May 2017, pp. 971–977.
[12] Y. Izumi, T. Ohshiro, H. Ogino, Y. Hine, and M. Shimao, “Selective Desulfurization of Dibenzothiophene by Rhodococcus erythropolis D-1,” Appl. Environ. Microbiol., vol. 60, no. 1, 1994, pp. 223–226.
[13] C. Oldfield, O. Pogrebinsky, J. Simmonds, E. S. Olson, and C. F. Kulpa, “Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968),” Microbiology, vol. 143, no. 9, 1997, pp. 2961–2973.
[14] R. A. Omar, N. Verma, and P. K. Arora, “Sequential desulfurization of thiol compounds containing liquid fuels: Adsorption over Ni-doped carbon beads followed by biodegradation using environmentally isolated Bacillus zhangzhouensis,” Fuel, vol. 277, p. 118208, Oct. 2020.
[15] F. Elmi, Z. Etemadifar, and G. Emtiazi, “A novel metabolite (1,3-benzenediol, 5-hexyl) production by Exophiala spinifera strain FM through dibenzothiophene desulfurization,” World J. Microbiol. Biotechnol., vol. 31, no. 5, May 2015, pp. 813–821.
[16] A. Aminsefat, B. Rasekh, and M. R. Ardakani, “Biodesulfurization of dibenzothiophene by Gordonia sp. AHV-01 and optimization by using of response surface design procedure,” Microbiology, vol. 81, no. 2, Apr. 2012, pp. 154–159.
[17] B. Yu, P. Xu, Q. Shi, and C. Ma, “Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain,” Appl. Environ. Microbiol., vol. 72, no. 1, Jan. 2006, pp. 54–58.
[18] N. Akhtar, M. A. Ghauri, and K. Akhtar, “Dibenzothiophene desulfurization capability and evolutionary divergence of newly isolated bacteria,” Arch. Microbiol., vol. 198, no. 6, Aug. 2016, pp. 509–519.
[19] N. Akhtar, M. A. Ghauri, M. A. Anwar, and K. Akhtar, “Analysis of the dibenzothiophene metabolic pathway in a newly isolated Rhodococcus spp,” FEMS Microbiol. Lett., vol. 301, no. 1, Jan. 2009, pp. 95–102.
[20] رشیدی، لادن، گوگردزدایی زیستی 4-متیل دی بنزوتیوفن توسط باکتری RIPI-S81، نشریه شیمی و مهندسی شیمی ایران، 1386، شماره 2، صفحه 85.
[21] ترکمنی، سارا، جداسازی گوگرد از نفت خام سنگین میدان سروش با استفاده از روش زیستی، نشریه علوم و مهندسی جداسازی، 1388، شماره اول، صفحه 67.