Simulation and Evaluation of Effective Solutions in Reducing Mercaptan and Sulfur in Liquid Gas Exit in Sulforex Unit

Document Type : Original research

Authors

1 M.Sc Student, Department of Chemical Engineering, Shahid Nikbakht Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

2 Professor, Department of Chemical Engineering, Shahid Nikbakht Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

3 Assistant Professor, Department of Chemical Engineering, Shahid Nikbakht Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

4 Refining Engineering Officer of Fluid Catalytic Cracking (FCC), Abadan Oil Refining Company, Barim, Abadan, Iran

Abstract

Liquefied petroleum gas (LPG) refers to the hydrocarbon gases propane, butane or their combination. Liquid gas is often used for heating purposes and vehicle fuel. In refineries, the hydrocarbon flow of propane, butane and pentane contains impurities such as methyl mercaptan, ethyl mercaptan and other mercaptans. In this research, the simulation of mercaptanization unit of Abadan refinery has been done. First, the unit was simulated in the ProMax software and after the validation of the simulation, the effect of process variables such as the caustic flow rate, caustic concentration, sour feed flow rate and washing column pressure on the concentration of mercaptan in product has been investigated. The concentration of mercaptans in the output product has been discussed. The results of the simulation show that the total calculation error is less than 10%, which indicates the accuracy of the simulation in steady state. Based on the simulation results, with the increase of caustic flow rate, concentration of caustic solvent and washing column pressure, the amount of produced product (ethyl mercaptan and methyl mercaptan) decreases. Only by increasing the flow rate of sour feed, the amount of produced product will increase.

Keywords

Main Subjects


[1] P. Marache, “Operating Instruction”, AXENS (IFP group technology), 2003.
[2] Y. Zhang, Y. Zhao, A. Konarov, D. Gosselink, H.G. Soboleski, P. Chen, “A novel nano-sulfur/polypyrrole/rapheme nanocomposite cathode with a dual-layered structure for lithium rechargeable batteries”, J. Power Source., Vol. 241(1), pp. 517-521, 2013.
[3] W. Engel, C. Burns, “Cost-effective, modular technologies for butane, propane and NGL treating”, Gas Processing & LNG, Vol. 1, pp. 17-22, 2020.
[4] S. Mehmandoost, P. Hejaz, “Propane Treatment unit, Operating Manual, Basis of Design & Unit Operating Considerations”, Iran South Gas Field: Phases 9&10, 2005
[5] Booklet, “South Pars Gas Field Development”, Phases 9 & 10 Onshore Facilities, 2007.
[6] E. Pino-Cortés, S. Montalvo, C. Huiliñir, F. Cubillos, J. Gacitúa, “Characteristics and Treatment of Wastewater from the Mercaptan Oxidation Process: A Comprehensive Review”, processes, Vol. 8, pp. 425-435, 2020.
[7] P. Barthe, M. Chaugny, S. Roudier, L. Delgado Sancho, “Best Available Techniques (BAT) Reference Document for the Refining of Mineral Oil and Gas”, Industrial Emissions Directive 2010/75/EU, Integrated Pollution Prevention and control, 2015.
[8] G. Zahedi, S.M. Kamali, “Investigation of the advantage prewash system in propane demercaptanization unit in South Pars Gas Complex, phases 9 & 10”, The 8th International Chemical Engineering Congress & Exhibition (IChEC), Kish, Iran, 2014.
[9] A. Samadi, S.R. Hashemi, “Role and Effect of Temperature on LPG Sweetening Process, World Academy of Science”, Engineering and Technology International Journal of Chemical and Molecular Engineering, Vol. 5(7), pp. 1-14, 2011.
[10] E. Fotoohi, F. Farahbod, “Experimental Evaluation of Mercaptan Removal Process from Liquefied Petroleum Gas”, International Journal of Materials Chemistry and Physics, Vol. 1(2), pp. 202-206, 2015.
[11] M.R. Kazerooni, F. Farahbod, “Experimental Investigation of Sulphur Removal from LPG: New Aspect”, Journal of Environmental Science and Technology, Vol. 9 (1), pp. 164-169, 2016.
[12] J.P. Campos, “Decreasing Caustic Soda Use in Biological Gas Desulfurization”, Department of Chemical Engineering, DMT Environmental Technology, Porto, 2019
[13]  ع. قربانی، ع. رشیدی، "بررسی فرایند هم­زمان مرکاپتان زدایی و نم­زدایی از جریان­های پروپان و بوتان با استفاده از فناوری نانو"، دومین همایش بین­الملی نفت، گاز و پتروشیمی، تهران، ایران، 1393.
[14] A. Mallaki, M. Farhadi, “Revamping of Merox LPG Sweetening Unit for Deeper Desulfurization”, 5th International Congress on Chemical Engineering, Kish Island, Iran, 1386.
[15] R. Elmi, A. Nejaei, A. Farshi, M.E. Ramazani, E. Alaie, “Investigation of spent caustic treatment processes in Bandar Abbas oil refinery”, J. Env. Sci. Tech., Vol 23(10), pp. 456-471, 2022.
[16] S. Houda, C. Lancelot, P. Blanchard, L. Poinel, C. Lamonier, “Oxidative Desulfurization of Heavy Oils with High Sulfur Content: A Review”, catalysts, Vol (34), pp. 132-147, 2018.
[17] M.A. Seifi, F. Farahbod, “Parametric and Experimental Study of Desulfurization Process from Valuable Fuels”, Journal of Nanoscience and Nanoengineering, Vol. 2(3), pp. 24-27, 2016.         
[18] R.M. Escudero, A. Puerta-Arana, A.D. Gonzalez-Delgado, “Process Simulation and Exergy Analysis of a Mercaptan Oxidation Unit in a Latin American Refinery”, ACS Omega, Vol. 5, pp. 21428−21436, 2020.
[19] H. Adib, N. Kazerooni, A. Falsafi, M.A. Adhami, M. Dehghan, A. Golnari, “Prediction of sulfur content in propane and butane after gas purification on a treatment unit”, Oil & Gas Science and Technology - Rev. IFP Energies nouvelles, Vol. 73, pp. 70-83, 2018.
[20] S.H. Esmaeili-Faraj, A. Bijani, M. Saei Moghaddam, “Simulation and Optimization of Demercaptanization of Propane and Butane in South Pars Gas Refineries”, Applied Research in Chemical – Polymer Engineering, Vol. 32, pp. 124-136, 2022.
[21] م. علی‌زاده، م. پورافشار، "مقایسه فرایند سولفورزدایی از میعانات گازی به روش مراکس با روش­های نوین سولفورزدایی و ارزیابی فنی و اقتصادی آن"، پایان­نامه کارشناسی ارشد مهندسی شیمی- گرایش انتقال و فرآوری گاز، دانشگاه فردوسی مشهد، 1391.
[22] ع. صمدی افشار، ح. حرافی، "تزریق روغن شستشو و نقش آن در پایداری تولید واحد مرکاپتان­زدایی"، اولین کنفرانس بین­المللی نفت، گاز، پتروشیمی و نیروگاهی، 1391.
[23] K. Jeyajothi, “Study on Effect of Desulfurization of Sour Crude Oil in Petro Chemical Industry”, International Journal of ChemTech Research, Vol. 8(7), pp 222-226, 2015.
[24] ح. رضایی، ا. صمدبین، ن. غلامی، د. فرخانی، م. بزمی، "بررسی اثر افزایش حلال و دمولسیفایر (نوع و غلظت افزودنی­ها) در گوگردزدایی از کاستیک واحدهای مرکاپتا ن­زدایی"، پژوهش نفت شماره 83، صص. 91- 75، 1393.
[25] S.K. Ganguly, A. Jain, N. Rathi, “Predicting De-mercaptanization in an LPG Extractor: A Parametric Approach”, Petroleum Science and Technology, Vol. 23, pp. 428-437, 2013.
[26] M. Ehsani, A.R. Safadoost, R. Avazzadeh, “Kinetic Study of Ethyl Mercaptan Oxidation in Presence of Merox Catalyst”, Iranian Journal of Chemistry and Chemical Engineering, Vol. 32(2), pp. 80-71, 2013.
[27] D.C.Y. Foo, Z.A. Manan, M. Selvan, M.L. McGuire, “Integrate process simulation and process synthesis”, Chemical Engineering Progress, Vol. 101(10), pp. 25-29, 2005.
[28] K.S. Pitzer, J.J, Kim, “Thermodynamics of Electrolytes IV. Activity and Osmotic Coefficients for Mixed Electrolytes”, Journal of the American Chemical Society, Vol. 96, pp. 5701-5723, 1974.