بررسی تأثیر زئولیت‌ها در عملکرد کاتالیست‌های فرآیند گوگردزدایی هیدروژنی گازوئیل

نوع مقاله : ترویجی

نویسندگان

1 دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران

2 استاد دانشکده مهندسی شیمی دانشگاه صنعتی شریف

3 هیات علمی/ پژوهشگاه صنعت نفت

4 دانشیار شیمی، پژوهشکده توسعه فناوری های کاتالیست،پژوهشگاه صنعت نفت، تهران، ایران

چکیده

حذف ترکیبات گوگردی از برش‌های نفتی به­ویژه گازوئیل به دلیل اثرات منفی ناشی از احتراق که بر سلامت انسان و اتمسفر می‌گذارد؛ به‌عنوان یک مشکل زیست‌محیطی جهانی مطرح می­شود. گوگردزدایی هیدروژنی یکی از روش‌های مؤثر برای حذف کامل ترکیبات حاوی گوگرد از سوخت‌های حمل‌ونقل است. بااین‌حال، برای پاسخگویی به مقررات زیست‌محیطی سخت‌گیرانه‌تر و جلوگیری از مسمومیت کاتالیست­های گران‌قیمت دیگر واحدها، توسعه یک نسل جدید از کاتالیزورهای HDS بسیار کارآمد، موردتوجه بوده است. در این میان کاتالیست­های زئولیتی از اهمیت برجسته‌ای در واکنش‌های شیمیایی مرتبط با صنایع شیمیایی، پتروشیمی و صنایع پالایشی نفت برخوردار می‌باشد. در این مقاله، خلاصه‌ای از پیشرفت‌ها و دستاوردهای اخیر در مورد پایه کاتالیست‌های آمیخته‌شده با زئولیت در فرآیند HDS که ناشی از ظرفیت بالا در حذف ترکیبات گوگردی مقاوم مانند: 4,6 DMDBTو بهبود عملکرد کاتالیست­های فرآیند HDS بیان می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the impact of zeolites on the performance of Diesel Hydrodesulfurization catalysts

نویسندگان [English]

  • Hamid Karami 1
  • Mohammad Kazemeini 2
  • Saeed Soltanali 3
  • Mehdi Rashidzadeh 4
1 Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
2 Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
3 Assistant Professor/ Research Institute of Petroleum Industry (RIPI)
4 Catalysis Technologies Development Division, RIPI, Tehran, Iran
چکیده [English]

The removal of sulfur-containing compounds (SCCs) from oil cuts, in particular diesel, is considered a global environmental issue due to the negative impacts of combustion products of diesel fuel on human health. Among the various desulfurization methods, Hydrodesulfurization is known as an effective method for the complete removal of SCCs from diesel fuel. Nonetheless, there has been a great interest in the development of a new generation of highly efficient HDS catalysts to respond to stricter environmental regulations and prevent poisoning of expensive catalysts used in other units. In the meantime, zeolite catalysts are of considerable importance in chemical reactions occurring in chemical, petrochemical, and oil refining industries. This paper reviews recent advances and achievements on catalysts mixed with zeolites in the HDS process due to its high capacity in the removal of highly stable SCCs such as 4, 6 dimethyldibenzothiophene and improvement of the performance of HDS catalysts.

کلیدواژه‌ها [English]

  • Hydrodesulfurization
  • Zeolite
  • Support Catalyst
1. Zhou W, Wei Q, Zhou Y, Liu M, Ding S, Yang Q. Applied Catalysis B : Environmental Hydrodesulfurization of 4 , 6-dimethyldibenzothiophene over NiMo sul fi de catalysts supported on meso-microporous Y zeolite with di ff erent mesopore sizes. Appl Catal B Environ. 2018;238(February):212-224. doi:10.1016/j.apcatb.2018.07.042
2. Rangarajan S, Mavrikakis M. On the preferred active sites of promoted MoS2 for hydrodesulfurization with minimal organonitrogen inhibition. ACS Catal. 2016;7(1):501-509.
3. Plant H. Plant-Wide Modeling , Optimization and Control of an Industrial Diesel Plant-Wide Modeling , Optimization and Control of an Industrial Diesel Hydroprocessing Plant. 2017;(February). doi:10.13140/RG.2.2.23698.86725
4. Kazakov MO, Nadeina KA, Danilova IG, Dik PP, Klimov OV, Pereyma VY, Gerasimov EY, Dobryakova IV, Knyazeva EE, Ivanova II, Noskov AS. Hydrocracking of vacuum gas oil over NiMo/Y-Al2O3: Effect of mesoporosity introduced by zeolite Y recrystallization. Catalysis Today. 2018 May 1;305:117-25.
5. Bellussi G, Rispoli G, Molinari D, Landoni A, Pollesel P, Panariti N, Millini R, Montanari E. The role of MoS 2 nano-slabs in the protection of solid cracking catalysts for the total conversion of heavy oils to good quality distillates. Catalysis Science & Technology. 2013;3(1):176-82.
6. Dik PP, Danilova IG, Golubev IS, Kazakov MO, Nadeina KA, Budukva SV, Pereyma VY, Klimov OV, Prosvirin IP, Gerasimov EY, Bok TO. Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: Influence of zeolite properties. Fuel. 2019 Feb 1;237:178-90.
7. Wu, L., Miao, G., Dai, X., Dong, L., Li, Z. and Xiao, J., 2019. Ultra-deep desulfurization of real diesel using two-layer silica gels under mild conditions. Energy & Fuels, 33(8), pp.7287-7296.
8. Kasztelan S. Sulfided Mo and CoMo supported on zeolite as hydrodesulfurization catalysts : transformation of dibenzothiophene and 4 , 6-dimethyldibenzothiophene. 2001;220:191-205.
9. Pawelec B, Navarro R, Fierro JLG, Cambra JF, Zugazaga F, Arias PL. Hydrodesulfurization over P d M o / H Y zeolite catalysts. 1997;76(1):61-71.
10. Welters WJJ, De Beer VHJ, Van Santen RA. Influence of zeolite acidity on thiophene hydrodesulfurization activity. Appl Catal A Gen. 1994;119(2):253-269.
11. Bataille F, Lemberton JL, Pérot G, Leyrit P, Cseri T, Marchal N, Kasztelan S. Sulfided Mo and CoMo supported on zeolite as hydrodesulfurization catalysts: transformation of dibenzothiophene and 4, 6-dimethyldibenzothiophene. Applied Catalysis A: General. 2001 Oct 25;220(1-2):191-205.
12. Hajjar Z, Kazemeini M, Rashidi A, Soltanali S, Bahadoran F. Naphtha HDS over Co-Mo/Graphene catalyst synthesized through the spray pyrolysis technique. Journal of Analytical and Applied Pyrolysis. 2017 Jan 1;123:144-51.
13. Hajjar Z, Kazemeini M, Rashidi A, Soltanali S. Optimizing parameters affecting synthesis of a novel Co–Mo/GO catalyst in a Naphtha HDS reaction utilizing D-optimal experimental design method. Journal of the Taiwan Institute of Chemical Engineers. 2017 Sep 1;78:566-75.
14. Hensen EJM, Poduval DG, van Veen JAR. Promotion of Thiophene Hydrodesulfurization by Ammonia over Amorphous-Silica− Alumina-Supported CoMo and NiMo Sulfides. Ind Eng Chem Res. 2007;46(12):4202-4211.
15. Marín C, Escobar J, Galván E, Murrieta F, Zárate R, Cortés V. NiMo Supported on Faujasite-modified Al 2 O 3 as Catalysts for the Hydrotreatment of a Light Cycle Oil / Straight Run Gas Oil Mixture. 2002;80(October):903-910.
16. Nakano K, Ali SA, Kim HJ, Kim T, Alhooshani K, Park JI, Mochida I. Deep desulfurization of gas oil over NiMoS catalysts supported on alumina coated USY-zeolite. Fuel processing technology. 2013 Dec 1;116:44-51.
17. Kulprathipanja S. Zeolites in Industrial Separation and Catalysis. John Wiley & Sons; 2010.
18. Weitkamp J. Zeolites and catalysis. Solid state ionics. 2000 Jun 1;131(1-2):175-88.
19. Han L, Zhou Z, Bollas GM. Heterogeneous modeling of chemical-looping combustion. Part 1: Reactor model. Chem Eng Sci. 2013;104:233-249.
20. Auerbach SM, Carrado KA, Dutta PK. Handbook of zeolite science and technology. CRC press; 2003 Jul 31.
21. Bej SK, Maity SK, Turaga UT. Search for an efficient 4, 6-DMDBT hydrodesulfurization catalyst: a review of recent studies. Energy & Fuels. 2004 Sep 15;18(5):1227-37.
22. Verboekend D, Vilé G, Pérez-ramírez J. Hierarchical Y and USY Zeolites Designed by Post- Synthetic Strategies. 2012:916-928. doi:10.1002/adfm.201102411
23. Ding L, Zheng Y, Zhang Z, Ring Z, Chen J. Hydrotreating of light cycled oil using WNi/Al2O3 catalysts containing zeolite beta and/or chemically treated zeolite Y. J Catal. 2006;241(2):435-445.
24. Duan A, Wan G, Zhang Y, Zhao Z, Jiang G, Liu J. Optimal synthesis of micro/mesoporous beta zeolite from kaolin clay and catalytic performance for hydrodesulfurization of diesel. Catal today. 2011;175(1):485-493.
25. Duan A, Gao Z, Huo Q, Wang C, Zhang D, Jin M, Jiang G, Zhao Z, Pan H, Chung K. Preparation and evaluation of the composite containing USL zeolite-supported NiW catalysts for hydrotreating of FCC diesel. Energy & fuels. 2010 Feb 18;24(2):796-803.
26. Soghrati E, Kazemeini M, Rashidi AM, Jozani KJ. Development of a structured monolithic support with a CNT washcoat for the naphtha HDS process. J Taiwan Inst Chem Eng. 2014;45(3):887-895.
27. Maity SK, Ancheyta J. Carbon modified Y zeolite used as support material for hydroprocessing catalysts. Catal Today. 2010;150(3-4):231-236.
28. Cui Q, Zhou Y, Wei Q, Tao X, Yu G, Wang Y, Yang J. Role of the zeolite crystallite size on hydrocracking of vacuum gas oil over NiW/Y-ASA catalysts. Energy & fuels. 2012 Aug 16;26(8):4664-70.
29. Taufiqurrahmi N, Mohamed AR, Bhatia S. Nanocrystalline zeolite Y: synthesis and characterization. In: IOP Conference Series: Materials Science and Engineering. Vol 17. IOP Publishing; 2011:12030.
30. Bo M, Xue T, Qian W, Meng Y, He M. Microporous and Mesoporous Materials Dealumination , silicon insertion and H-proton exchange of NaY in one step with acid ethanol solution. Microporous Mesoporous Mater. 2012;159:50-56. doi:10.1016/j.micromeso.2012.04.027
31. Asadi AA, Alavi SM, Royaee SJ, Bazmi M. Dependency of acidic and surficial characteristics of steamed Y zeolite on potentially effective synthesis parameters: screening, prioritizing and model development. Microporous and Mesoporous Materials. 2018 Mar 15;259:142-54.
32. Soltanali S, Halladj R, Rashidi A, Hajjar Z. The effect of HZSM-5 catalyst particle size on gasoline selectivity in methanol to gasoline conversion process. Powder Technol. 2017;320:696-702.
33. Soltanali S, Halladj R, Rashidi A, Bazmi M, Bahadoran F. The effect of HZSM-5 catalyst particle size on kinetic models of methanol to gasoline conversion. Chem Eng Res Des. 2016;106:33-42.
34. Ding L, Zheng Y, Yang H, Parviz R. LCO hydrotreating with Mo-Ni and W-Ni supported on nano-and micro-sized zeolite beta. Appl Catal A Gen. 2009;353(1):17-23.
35. Khandan N, Kazemeini M, Aghaziarati M. Synthesis of Dimethyl Ether over Modified H-Mordenite Zeolites and Bifunctional Catalysts Composed of Cu/ZnO/ZrO 2 and Modified H-Mordenite Zeolite in Slurry Phase. Catal Letters. 2009;129(1-2):111-118.
36. Verboekend D, Nuttens N, Locus R, Van Aelst J, Verolme P, Groen JC, Pérez-Ramírez J, Sels BF. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions. Chemical Society Reviews. 2016 Jun 13;45(12):3331-52.
37. Fotovat F, Kazemian H, Kazemeini M. Synthesis of Na-A and faujasitic zeolites from high silicon fly ash. Mater Res Bull. 2009;44(4):913-917.
38. Feng A, Yu Y, Mi L, Cao Y, Yu Y, Song L. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent. Microporous Mesoporous Mater. 2019;280:211-218.
39. Sun Y, Prins R. Hydrodesulfurization of 4, 6‐dimethyldibenzothiophene over noble metals supported on mesoporous zeolites. Angew Chemie Int Ed. 2008;47(44):8478-8481.
40. Tang T, Yin C, Wang L, Ji Y, Xiao F-S. Good sulfur tolerance of a mesoporous Beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics. J Catal. 2008;257(1):125-133.
41. Højholt KT, Vennestrøm PNR, Tiruvalam R, Beato P. Tight bifunctional hierarchical catalyst. Chem Commun. 2011;47(48):12864-12866.
42. Flanigen EM, Jansen JC, van Bekkum H. Introduction to Zeolite Science and Practice. Elsevier; 1991.
43. Lara G, Escobar J, De Los Reyes JA, Barrera MC, Colín JA, Murrieta FR. Dibenzothiophene HDS Over Sulphided CoMo on High‐Silica USY Zeolites. Can J Chem Eng. 2005;83(4):685-694.
44. Kadono T, Chatani H, Kubota T, Okamoto Y. Structure of molybdenum sulfide clusters encaged in zeolites: Effect of zeolite composition. Microporous mesoporous Mater. 2007;101(1-2):191-199.
45. Rinaldi N, Yoshioka M, Kubota T, Okamoto Y. Hydrodesulfurization Activity of Co–Mo/Al2O3 Catalysts Prepared with Citric Acid: Post-treatment of Calcined Catalysts with High Mo Loading. J Japan Pet Inst. 2010;53(5):292-302.
46. Chen X, Liu X, Wang L, Li M, Williams CT, Liang C. High sulfur tolerance of Ni–Si intermetallics as hydrodesulfurization catalysts. RSC Adv. 2013;3(6):1728-1731.
47. Navarro R, Pawelec B, Fierro JL, Vasudevan PT, Cambra JF, Guemez MB, Arias PL. Dibenzothiophene hydrodesulfurization on HY-zeolite-supported transition metal sulfide catalysts. Fuel processing technology. 1999 Sep 1;61(1-2):73-88.
48. Azizi N, Ali SA, Alhooshani K, Kim T, Lee Y, Park JI, Miyawaki J, Yoon SH, Mochida I. Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports. Fuel processing technology. 2013 May 1;109:172-8.
49. Kumaran GM, Garg S, Soni K, Prasad V, Sharma LD, Dhar GM. Catalytic functionalities of H-β-zeolite-supported molybdenum hydrotreating catalysts. Energy & fuels. 2006;20(5):1784-1790.
50. Sarbak Z. NiMo Catalysts supported on chromium modified zeolites of type X and Y—their structure and HDS activity. Appl Catal A Gen. 2001;207(1-2):309-314.
51. Tatsumi T, Taniguchi M, Ishige H, Ishii Y, Murata T, Hidai M. Effectiveness of Mo Ni sulfide clusters in the preparation of zeolite-supported hydrodesulfurization catalysts. Appl Surf Sci. 1997;121:500-504.
52. Castillo-Villalón P, Ramírez J, Louis C, Massiani P. Characterization and catalytic performance of ruthenium sulfide catalysts supported on H-BEA, Na–and Cs–H-BEA zeolites. Appl Catal A Gen. 2008;343(1-2):1-9.
53. Barros MASD, Zola AS, Arroyo PA, Tavares CRG. BINARY ION EXCHANGE OF METAL IONS IN Y AND X ZEOLITES. 2003;20(04):413-421.