شبیه‌سازی عددی اثر اندازه و شکل نانوذرات Al2O3 در یک مبدل حرارتی دولوله‌ای

نوع مقاله : ترویجی

نویسندگان

1 استادیار دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل

2 دانشجوی کارشناسی ارشد دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل

چکیده

در این پژوهش اثرات اندازه و شکل نانو ذرات  Al2O3معلق در سیال پایه‌ آب با کسر‌حجمی 2 درصد در دمای 25 درجه سانتیگراد روی عملکرد مبدل حرارتی دولوله‌ای به ‌صورت عددی در دو رژیم جریان آرام و آشفته مورد ‌بررسی قرار می گیرد. قطر نانو ذرات بین10 تا 100 نانومتر می‌باشد. نانو ذرات با اشکال کروی، استوانه‌ای و ترکیبی از نانو ذرات کروی-استوانه‌ای با درصدهای30، 50، 60، 70، 80، 90 از نانو ذرات استوانه‌ای مورد ‌مطالعه قرار گرفتند. اثر شکل نانو ذرات نشان داد با افزایش درصد نانو ذرات استوانه‌ای، میزان انتقال حرارت در مبدل حرارتی افزایش می یابد و نانو ذرات استوانه‌ای در رژیم جریان آشفته عملکرد بهتری در داخل مبدل حرارتی دارند بطوریکه عدد ناسلت آن 15/4 درصد بیش‌تر از نانو سیالات حاوی نانو ذرات کروی می‌باشد. هم‌چنین مشاهده شد این سوسپانسیون بیش‌ترین میزان افت فشار را در داخل مبدل حرارتی دارد. نتایج اندازه نانو ذرات آلومینا با قطرهای 10، 50 و 100 نانومتر نشان داد که نانو ذرات با قطر کوچک‌تر بیش‎ترین افزایش عدد ناسلت و افت فشار را دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation of Effect of Size and Shape of Al2O3 Nanoparticles in a Double Tube Heat Exchanger

نویسندگان [English]

  • Alireza Miroliaei 1
  • Kobra Sadegh 2
1 Department of chemical engineering, University of Mohaghegh Ardabili, Ardabil
2 Department of chemical engineering, University of Mohaghegh Ardabili, Ardabil
چکیده [English]

In this study, the effects of shape and size of Al2O3suspended nanoparticles in water-based fluid with 2%volume fraction at 25 °C are numerically investigated on the performance of double tube heat exchanger in the laminar and turbulent flow regimes. The nanoparticle’s diameter was considered between 10 and 100 nm. The nanoparticles with shapes of spherical, cylindrical, and combination of spherical-cylindrical with percentages of 30, 50, 60, 70, 80, 90 of cylindrical nanoparticles were studied. The effect of shape of nanoparticles showed that heat transfer rate increases in the heat exchanger by increasing the percentage of cylindrical nanoparticles and cylindrical nanoparticles offer better heat transfer characteristics and heat transfer rate in the turbulent flow regime as its Nusselt number is15.4% more than the spherical nanoparticles. It was also seen that this suspension has the maximum pressure drop in the heat exchanger. The results of size of alumina nanoparticles with diameters of 10, 50 and 100 nm showed that the nanoparticles with smaller diameter have the largest increase in Nusselt number as well as pressure drop.

کلیدواژه‌ها [English]

  • Combination of nanoparticles
  • Nanoparticle’s shape
  • Nanoparticle’s diameter
  • Double tube heat exchanger
  • Nanofluid
1. Khedkar, R. S., Sonawane, S. S., Wasewar, K. L., Heat transfer study on concentric tube heat exchanger using TiO2–water based nanofluid, International Communications in Heat and Mass Transfer, Vol. 57, 2014, pp. 163-169.
2. Zeinali Heris, S., Nasr Esfahany, M., Etemad, S. G., Numerical investigation of nanofluid laminar convective heat transfer through a circular tube, Numerical Heat Transfer, Vol. 52, No. 11, 2007, pp. 1043-1058.
3. Palm, S. J., Roy, G., Nguyen, C. T., Heat transfer enhancement with the use of nanofluids in radialflow cooling systems considering temperature-dependent properties, Applied Thermal Engineering, Vol. 26, 2006, pp. 2209-2218.
4. Choi, S. U. S., Eastman, J. A., Enhancing thermal conductivity of fluids with nanoparticles, in International Mechanical Eengineering Congress and Exhibition. 1995: San Francisco.
5. Ghadimi, A., Saidur, R., Metselaar, H. S. C., A review of nanofluid stability properties and characterization in stationary conditions, International Journal of Heat and Mass Transfer, Vol. 54, 2011, pp. 4051-4068.
6. Mahian, O., Kianifar, A., Kleinstreuer, C., Al-Nimr, M. d. A., Pop, I., Sahin, A. Z., Wongwises, S., A review of entropy generation in nanofluid flow, International Journal of Heat and Mass Transfer, Vol. 65, 2013, pp. 514-532.
7. Heyhat, M. M., Kowsary, F., Rashidi, A. M., Esfehani, S. A. V., Amrollahi, A., Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime,Heat and Mass Transfer, Vol. 39, 2012, pp. 1272–1278.
8. Murshed, S. M. S., Leong, K. C., Yang, C., Investigations of thermal conductivity and viscosity of nanofluids,International Journalof Thermal Sciences, Vol. 47. No. 5, 2008, pp. 560-568.
9. Bianco, V., Chiacchio, F., Manca, O., Nardini, S., Numerical investigation of nanofluids forced convection in circular tubes, Applied Thermal Engineering, Vol. 29, 2009, pp. 3632-3642.
10. Duangthongsuk, W., Wongwises, S., Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid, International Communications in Heat and Mass Transfer, Vol. 35, No. 10, 2008, pp. 1320-1326.
11. Duangthongsuk, W., Wongwises, S., An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime, International Journal of Heat and Mass Transfer, Vol. 53, 2010, pp. 334-344.
12. Cui, W., Bai, M., Lv, J., Li, G., Li, X., On the influencing factors and strengthening mechanism for thermal conductivity of nanofluids by molecular dynamics simulation, Industrial & Engineering Chemistry Research, Vol. 50, No.23, 2011, pp. 13568-13575.
13. Sajadi, A. R., Kazemi, M. H., Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube, International Communications in Heat and Mass Transfer, Vol. 38, No. 10, 2011, pp. 1474-1478.
14. Akhtari, M., Haghshenasfard, M., Talaie, M. R., Numerical and experimental investigation of heat transfer of   -Al2O3/Water nanofluid in double pipe and shell and tube heat exchanger,Numerical Heat Transfer, Vol. 63, No. 12 ,2013.
15. Dawood, H. K., Mohammed, H. A., Sidik, N. A. C., Munisamy, K. M., Numerical investigation on heat transfer and friction factor characteristics of laminar and turbulent flow in an elliptic annulus utilizing nanofluid, International Communications in Heat and Mass Transfer, Vol. 66, 2015, pp. 148-157.
16. Darzi, A. A. R., Farhadi, M., Sedighi, K., Heat transfer and flow characteristics of Al2O3–water nanofluid in a double tube heat exchanger, International Communications in Heat and Mass Transfer, Vol. 47, 2013, pp. 105-112.
17. Khanafer, K., Vafai, K., A critical synthesis of thermophysical characteristics of nanofluids, International Journal of Heat and Mass Transfer, Vol. 54, 2011, pp. 4410-4428.
18. Timofeeva, E., Routbort, R., Singh, D., Particle shape effects on thermophysical properties of alumina nanofluids, Applied physics, Vol. 106. No. 1, 2009.
19. Corcione, M., Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls, International Journal of Thermal Sciences, Vol. 49, No. 9, 2010, pp. 1536-1546.
20. Masoumi, N., Sohrabi, N., Behzadmehr, A., A new model for calculating the effective viscosity of nanofluids, Applied Physics, Vol. 42, 2009.
21. Chen, W.-L., Guo, Z., Chen, C. o.-K., A numerical study on the flow over a novel tube for heat-transfer enhancement with a linear eddy-viscosity model, International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 3431-3439.
22. Menter, F.R., Zonal two equation k-ω turbulence models for aerodynamic flows, 1993, 93-2006,.
23. Fluent12, Theory gide, 4.5.2-Shear stress transport(SST) k-w model,4-31, 2009.
24. Incropera, F.P., Witt, D.P.D., Introduction to heat transfer, 4th ed., John Wiley & Sons, Inc.,  2002.
25. Pak, B. C., Cho, Y. I., Hydrodynamic and heat transfer study of dispersed fluids with submicron metalic oxide particles,Journal of Thermal Energy Generation, Vol. 11 (2), 1998 pp. 151-170.
26. Syam Sundar, L., Singh, M.K., Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: A review, Renewable and Sustainable Energy Reviews, Vol. 20, 2013, pp. 23-35.
27. Rea, U., McKrell, T., Hu, L.-w., Buongiorno, J., aminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids, International Journal of Heat and Mass Transfer,Vol. 52, 2009, pp. 2042-2048.
28. Vanaki, S. M., Mohammed, H. A., Abdollahi, A., Wahid, M. A., Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts,Journal of Molecular Liquids,Vol. 196, 2014, pp.  32-42.
29. Jeong, J., et al., Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids, International Journal of Refrigeration,Vol.36, No. 8, 2013, pp. 2233-2241.