مقایسه عملکرد کاتالیست‌های آلی-فلزی مراکز نیکل و مولیبدن در تبدیل مازوت

نوع مقاله : پژوهشی

نویسندگان

1 فارغ‌التحصیل مقطع دکترای مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه تهران، تهران

2 استاد، مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه تهران، تهران

چکیده

تبدیل باقی‌مانده‌های سنگین نفتی همچون مازوت به دلیل کاهش مصرف داخلی و صادرات در پی سخت‌گیرانه‌تر شدن ملاحظات زیست‌محیطی از ارزش بالائی برخوردار است. در این راستا، تبدیل کاتالیستی مازوت در حضور کاتالیست­های نیکل و مولیبدن بر پایه ساختار آلی-فلزی روی-آزولات6 (MAF-6) بررسی می‌شود. MAF-6 به دلیل سطح بالا، اسیدیته معتدل و ساختار منعطف نسبت به پایه‌های صنعتی همچون آلومینا و همچنین آب­گریزی شدید به‌عنوان بستر پخش فاز فعال فلزی در محیط نفت سنگین انتخاب گردید. جای‌گیری فلزات درون پایه به روش درجا انجام و اثر %0/7 وزنی از کاتالیست بر کمیت و کیفیت محصول مطلوب (مایع) بررسی گردید. در مقایسه با فرایند ارتقاء غیر کاتالیستی، محصولات مایع تولیدی در حضور ساختارهای آلی-فلزی حاوی نیکل و مولیبدن به ترتیب با %52 و %37/5 افت ویسکوزیته بیش‌تر، %3 و %11/4 آسفالتن­زدائی بیش‌تر، افزایش محتوای برش­های سوختی از %67/6 تا %73/5 و %70/5 و کاهش بیش‌تر در آروماتیسیتی همراه بوده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of the performance of nickel and molybdenum containing metal-organic framework catalysts in conversion of heavy fuel oil

نویسندگان [English]

  • Marjan Razavian 1
  • Shohreh Fatemi 2
1 PhD Graduate in Chemical Engineering, School of Chemical Engineering, University of Tehran, Tehran
2 Professor in Chemical Engineering, School of Chemical Engineering, University of Tehran, Tehran
چکیده [English]

Conversion of heavy residual oils like Mazut  is of great importance due to the decrease in local consumption and export following the legislation of strict environmental limitations. In this regard, catalytic conversion of Mazut in the presence of nickel and molybdenum supported on MAF-6 metal-organic framework is studied. MAF-6 was nominated as active phase carrier in heavy oil owing to its higher surface area, milder acidity and flexible framework compared to conventional industrial supports like Alumina and also very high hydrophobicity. Metal insertion was performed via in-situ method and influence of 0.7wt% of prepared catalyst on quality and quantity of upgraded liquid was investigated. Compared to the thermal upgrading, upgrading with nickel and molybdenum containing catalysts were accompanied with 52% and 37.5% more viscosity reduction, 3% and 11.4% higher asphaltene removal, increase in light and middle distillates content from 67.6% to 73.5% and 70.5% and more decrease in aromaticity, respectively.

کلیدواژه‌ها [English]

  • Heavy Oil Upgrading
  • Mazut
  • Metal-Azolate Framework-6 (MAF-6)
  • Metal Supported Catalyst
  • Nickel/Molybdenum
[1] World Oil Outlook 2040 Executive Summary, Nov 2019; Organization of the Petroleum Exporting Countries, 2019.
[2]­ American Association of Petroleum Geologists, Energy Minerals Division, (2019). Unconventional energy resources: 2017 review. Natural Resources Research, 28, pp. 1661-1751.
[3] LIU, Z., WANG, H., Blackbourn, G., MA, F., HE, Z., WEN, Z., & WU, Z. (2019). Heavy oils and oil sands: global distribution and resource assessment. Acta Geologica Sinica‐English Edition, 93(1), pp. 199-212.
[4] Alawad, I., & Al Zubaidi, I. (2019). Advances in Upgrading Process of Petroleum Residue: A Review. European Journal of Engineering Research and Science, 4(6), pp. 104-110.
[5] Li, C., Huang, W., Zhou, C., & Chen, Y. (2019). Advances on the transition-metal based catalysts for aquathermolysis upgrading of heavy crude oil. Fuel, 257, 115779.
[6] Purón, H., Pinilla, J. L., Berrueco, C., Montoya De La Fuente, J. A., & Millan, M. (2013). Hydrocracking of Maya vacuum residue with NiMo catalysts supported on mesoporous alumina and silica–alumina. Energy & fuels, 27(7), pp. 3952-3960.
[7] Badoga, S., Ganesan, A., Dalai, A. K., & Chand, S. (2017). Effect of synthesis technique on the activity of CoNiMo tri-metallic catalyst for hydrotreating of heavy gas oil. Catalysis Today, 291, pp. 160-171.
[8] Purón, H., Pinilla, J. L., Suelves, I., & Millan, M. (2015). Acid treated carbon nanofibers as catalytic support for heavy oil hydroprocessing. Catalysis Today, 249, pp. 79-85.
[9] Kondoh, H., Tanaka, K., Nakasaka, Y., Tago, T., & Masuda, T. (2016). Catalytic cracking of heavy oil over TiO2–ZrO2 catalysts under superheated steam conditions. Fuel, 167, pp. 288-294.
[10] Griffin, S. L., & Champness, N. R. (2020). A periodic table of metal-organic frameworks. Coordination Chemistry Reviews, 414, 213295.
[11] Liao, P. Q., He, C. T., Zhou, D. D., Zhang, J. P., & Chen, X. M. (2016). Porous metal azolate frameworks. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications, 1, pp. 309-343.
[12] Zanon, A., & Verpoort, F. (2017). Metals@ ZIFs: Catalytic applications and size selective catalysis. Coordination Chemistry Reviews, 353, pp. 201-222.
[13] Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C. Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews, 43(16), pp. 6011-6061.
[14] Zhang, C., Lively, R. P., Zhang, K., Johnson, J. R., Karvan, O., & Koros, W. J. (2012). Unexpected molecular sieving properties of zeolitic imidazolate framework-8. The journal of physical chemistry letters, 3(16), pp. 2130-2134.
[15] He, C. T., Jiang, L., Ye, Z. M., Krishna, R., Zhong, Z. S., Liao, P. Q., ... & Chen, X. M. (2015). Exceptional hydrophobicity of a large-pore metal–organic zeolite. Journal of the American Chemical Society, 137(22), pp. 7217-7223.
[16] Bhadra, B. N., Seo, P. W., Khan, N. A., & Jhung, S. H. (2016). Hydrophobic cobalt-ethylimidazolate frameworks: phase-pure syntheses and possible application in cleaning of contaminated water. Inorganic chemistry, 55(21), pp. 11362-11371.
[17] Kendell, S., & Brown, T. (2010). Detailed product and kinetic analysis for the low-pressure selective oxidation of isobutane over phosphomolybdic acid. Reaction Kinetics, Mechanisms and Catalysis, 99(2), pp. 251-268.
[18] Xing, J. C., Zhu, Y. L., & Jiao, Q. J. (2014). Rapid synthesis of water-soluble NiCl2 nanorods via recrystallization for super capacitors applications. Journal of New Materials for Electrochemical Systems, 17(4), pp. 209-211.
[19] Kürkçüoğlu, G. S., Kiraz, F. Ç., & Sayın, E. (2015). Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, pp. 8-16.
[20] Kumari, G., Jayaramulu, K., Maji, T. K., & Narayana, C. (2013). Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study. The Journal of Physical Chemistry A, 117(43), pp. 11006-11012.
[21] Freire, A. I., & Alves, W. A. (2012). Using vibrational and electronic spectroscopies to investigate different complexes in the formamide/nickel chloride system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 89, pp. 259-263.
[22] Anand, S., Sundararajan, R. S., Ramachandraraja, C., Ramalingam, S., & Durga, R. (2015). Molecular vibrational investigation [FT-IR, FT-Raman, UV–Visible and NMR] on Bis (thiourea) Nickel chloride using HF and DFT calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, pp. 203-215.
[23] Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), pp.1051-1069.
[24] Wu, C. S., Xiong, Z. H., Li, C., & Zhang, J. M. (2015). Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC advances, 5(100), pp. 82127-82137.
[25] Jian, M., Liu, B., Zhang, G., Liu, R., & Zhang, X. (2015). Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465, pp. 67-76.
[26] Yu, W., Salciccioli, M., Xiong, K., Barteau, M. A., Vlachos, D. G., & Chen, J. G. (2014). Theoretical and experimental studies of C–C versus C–O bond scission of ethylene glycol reaction pathways via metal-modified molybdenum carbides. ACS Catalysis, 4(5), pp. 1409-1418.
[27] Ang, T., Tian, X., Yang, Y., Li, Y. W., Wang, J., Beller, M., & Jiao, H. (2016). Structures of seven molybdenum surfaces and their coverage dependent hydrogen adsorption. Physical Chemistry Chemical Physics, 18(8), pp. 6005-6012.
[28] Badoga, S., Ganesan, A., Dalai, A. K., & Chand, S. (2017). Effect of synthesis technique on the activity of CoNiMo tri-metallic catalyst for hydrotreating of heavy gas oil. Catalysis Today, 291, pp. 160-171.
[29] Celis-Cornejo, C. M., Pérez-Martínez, D. J., Orrego-Ruiz, J. A., & Baldovino-Medrano, V. G. (2018). Identification of Refractory Weakly Basic Nitrogen Compounds in a Deeply Hydrotreated Vacuum Gas Oil and Assessment of the Effect of Some Representative Species over the Performance of a Ni–MoS2/Y-Zeolite–Alumina Catalyst in Phenanthrene Hydrocracking. Energy & Fuels, 32(8), pp. 8715-8726.
[30] Wei, B. M., Zhang, Z. Y., & Dai, Z. Q. (2010). Friedel-Crafts acylation of anisole catalyzed by green, reusable hydroxyapatite-zinc bromide catalyst. In Advanced Materials Research (Vol. 113, pp. 18-21). Trans Tech Publications Ltd.
[31] Aso, K., Kitaura, H., Hayashi, A., & Tatsumisago, M. (2011). Synthesis of nanosized nickel sulfide in high-boiling solvent for all-solid-state lithium secondary batteries. Journal of Materials Chemistry, 21(9), pp. 2987-2990.
[32] Zhang, Y. H., Guo, L., He, L., Liu, K., Chen, C., Zhang, Q., & Wu, Z. (2007). Controlled synthesis of high-quality nickel sulfide chain-like tubes and echinus-like nanostructures by a solution chemical route. Nanotechnology, 18(48), 485609.
[33] Sosnin, G. A., Yazykov, N. A., Yeletsky, P. M., Zaikina, O. O., & Yakovlev, V. A. (2020). Molybdenum recovery from spent Mo-based dispersed catalyst accumulated in heavy oil steam cracking coke. Fuel Processing Technology, 208, 106520.