آنالیز حساسیت پارامترهای تأثیرگذار در طراحی دیوارههای تراوای واکنش زا ) PRBs ( برای تصفیه آب زیرزمینی آلوده به ترکیبات نفتی محلول

نوع مقاله : ترویجی

نویسندگان

1 شرکت مهندسین مشاور کهن دژ شارستان

2 عضو هیات علمی دانشکده مهندسی عمران دانشگاه صنعتی خواجه نصیرالدین طوسی

3 عضو هیات علمی دانشکده عمران دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

مفهوم فناوری دیواره های تراوای واکنش زا (PRBs)،‌ شامل قرار دادن یک محیط واکنش‌زای عمود بر مسیر بالقوه‌ی جریان آب زیرزمینی است. با توجه به عدم ورود این فناوری به کشورمان، در این مطالعه سعی شد تا در مورد چگونگی تصفیه آلودگی های نفتی محلول و نحوه طراحی این دیواره‌ها برای این منظور تحقیق شود. برای شبیه سازی آب زیرزمینی عبوری از دیواره، از کد نرم‌افزاری Visual Modflow استفاده شد. سپس از شبیه سازی‌ها برای مطالعه‌ی حساسیت پارامترهای مختلف و شناسایی بحرانی ترین آن‌ها در طراحی سیستم استفاده گردید. با علم به این پارامترهای بحرانی و تحلیل آن ها در منحنی های طراحی مربوطه می‌توان در هر نقطه از کشور به حالت بهینه طراحی این دیواره ها دست یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sensitivity Analysis of Important Parameters in Designing Permeable Reactive Barriers (PRBs) Treating Soluble Petroleum Contaminations in Groundwater

نویسندگان [English]

  • Mehran Naseri rad 1
  • Mohamad Reza Sabour 2
  • Majid Ehteshami 3
1 Kohan Dej Sharestan Co
2 Associated Professor, Civil Engineering faculty, K.N.Toosi university of technology
3 Assistant Professor, Civil Engineering faculty, K.N.Toosi university of technology
چکیده [English]

The concept of Permeable reactive barriers (PRBs) technology involves the emplacement of a permeable barrier containing reactive materials across the flow path of the contaminated groundwater to intercept and treat the contaminants as the plume flows through it under the influence of the natural hydraulic gradient. Contaminant removal is usually accomplished via processes such as adsorption, precipitation, denitrification and biodegradation.
The focus of the present study was centered on the modeling analysis to support the Permeable Reactive Barrier (PRB) design. In this study we used Visual MODFLOW code to simulate groundwater passing through a barrier. The simulations were then used to study the sensitivity of different parameters and identify those that were critical to the design of the system. The results of the sensitivity analysis and the developed design curves can be used to arrive at a uniform procedure for the design of a Continuous Configuration Barrier System.

کلیدواژه‌ها [English]

  • Groundwater contamination
  • In situ remediation
  • Modeling with Visual Modflow
  • Permeable reactive barriers
  • Sensitivity analysis
[1] Tase, N., 1992. Groundwater contamination in Japan. Environ. Geol. Water Sci. 20 (1), 15–20.
[2] Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B., Cameron, S.C., 2010. Denitrifying bioreactors – an approach for reducing nitrate loads to receiving waters. Ecol. Eng. 36 (11), 1532–1543.
[3] Wiafe, S., Ofosu, S.A., Ahima, J., 2013. The quality of groundwater resources around auto-mechanic workshop enclaves in Ghana. Eng. Sci. Technol. 1 (1), 38–49.
[4] Rodak, C., Silliman, S.E., Bolster, D., 2014. Time-dependent health risk from contaminated groundwater including use of reliability, resilience, and vulnerability as measures. JAWRA J. Am. Water Resour. Assoc. 50 (1), 14–28.
[5] Starr, R.C., Cherry, J.A., 1994. In situ remediation of contaminated ground water: the funnel-and-gate system. Ground Water 32 (3), 465–476.
[6] Gavaskar, A., Gupta, N., Sass, B., Janosy, R., Hicks, J., 2000. Design Guidance for Application of Permeable Reactive Barriers for Groundwater Remediation. Columbus, OH, 157pp.
[7] Gautam C Ijoor, 1999. MODELING OF A PERMEABLE REACTIVE BARRIER. A Thesis Submitted to the Faculty of New Jersey Institute of Technology. In Partial Fulfillment of the requirements for the Degree of Master of Science in Environmental Engineering Department of Civil and Environmental Engineering.
]8[ مهران ناصری راد، 1394 (2015 میلادی). مدل‌سازی عملکرد دیواره‌های تراوای واکنش‌زا در تصفیه آب زیرزمینی آلوده، پایان نامه کارشناسی ارشد، دانشکده عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران.
[9] Carey, M.A., Fretwell, B.A., Mosley, N.G., Smith, J.W.N., 2002. Guidance on the Use of Permeable Reactive Barriers for Remediating Contaminated Groundwater. National Groundwater and Contaminated Land Centre Report NC/01/51, UK Environment Agency, Bristol. 140pp.
[10] Skinner, S.J., Schutte, C.F., 2006. The feasibility of a permeable reactive barrier to treat acidic sulphate- and nitrate-contaminated groundwater. Water SA 32 (2), 129–136.
[11] Wilkin, R.T., Puls, R.W., 2003. Capstone Report on the Application, Monitoring, and Performance of Permeable Reactive Barriers for Ground-Water Remediation: Volume 1 Performance Evaluations at Two Sites. Report EPA/600/R-03/045a, U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH, 135pp.
[12] Puls, R.W., 2006. Long-term performance of permeable reactive barriers: lessons learned on design, contaminant treatment, longevity, performance monitoring and cost – an overview. In: Twardowska, I. et al. (Eds.), Soil and Water Pollution Monitoring. Protection and Remediation, Springer, Dordrecht, The Netherlands, pp. 221–229.
[13] Chen, Y., Li, J., Lei, C., Shim, H., 2011a. Interactions between BTEX, TPH, and TCE during their bio-removal from the artificially contaminated water. In: Bionature 2011: The Second International Conference on Bioenvironment, Biodiversity and Renewable Energies, Venice, Italy, pp. 33–37.
[14] Korte, N.E., 2001. Zero-Valent Iron Permeable Reactive Barriers: A Review of Performance. Environmental Sciences Division Publication No. 5056, U.S. Department of Energy, Washington DC.
[15] Warner, S.D., Sorel, D., 2002. Chlorinated solvent and DNAPL remediation. In: Henry, S.M., Warner, S.D. (Eds.), American Chemical Society, Washington, DC.
[16] ITRC, Interstate Technology & Regulatory Council, 2011. Permeable Reactive Barrier: Technology Update. PRB: Technology Update Team, Washington, D.C., 156 pp.
[17] Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B., Cameron, S.C., 2010. Denitrifying bioreactors – an approach for reducing nitrate loads to receiving waters. Ecol. Eng. 36 (11), 1532–1543.
[18] Köber, R., Schäfer, D., Ebert, M., Dahmke, A., 2002. Coupled in situ reactors using Fe0 and activated carbon for the remediation of complex contaminant mixtures in groundwater. In: Thornton, S.F., Oswald, S.E. (Eds.), Proceedings of the Groundwater Quality 2001 Conference. IAHS, Sheffield, UK, pp. 18–21.
[19] Gavaskar, A., Gupta, N., Sass, B., Janosy, R., Hicks, J., 2000. Design Guidance for Application of Permeable Reactive Barriers for Groundwater Remediation. Columbus, OH, 157pp.
[20] Stevens, C.J., Quinton, J.N., 2009. Diffuse pollution swapping in arable agricultural systems. Crit. Rev. Environ. Sci. Technol. 39 (6), 478–520.
[21] Healy, M.G., Ibrahim, T.G., Lanigan, G.J., Serrenho, A.J., Fenton, O., 2012. Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors. Ecol. Eng. 40, 198–209.
[22] Birke, V., Burmeier, H., Jefferis, S., Gaboriau, H., Touze, S., Romain, C., 2007. Permeable reactive barriers (PRBs) in Europe: potentials and expectations. Ital. J. Eng. Geol. Environ. 1, 1–8.
[23]Allison, J.D., Brown, D.S., Novo-Gradac, K.J., 1991. MINTEQA2/PRODEFA2, A geochemical Assessment Model for Environmental Systems. Report EPA/600/ 3-91/021, U.S. Environmental Protection Agency, Athens, Georgia. 107pp.
[24] Parkhurst, D.L., Appelo, C.A.J., 1999. User’s guide to PHREEQC (Version 2): a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey, Denver, CO. 309pp.
 [25] Mackenzie, P.D., Horney, D.P., Sivavec, T.M., 1999. Mineral precipitation and porosity losses in granular iron columns. J. Hazard. Mater. 68 (1–2), 1–17.
[26] Phillips, D.H., Gu, B., Watson, D.B., Roh, Y., Liang, L., Lee, S.Y., 2000. Performance evaluation of a zerovalent iron reactive barrier: mineralogical characteristics. Environ. Sci. Technol. 34 (19), 4169–4176.
[27] Gu, B., Watson, D.B., Wu, L., Phillips, D.H., White, D.C., Zhou, J., 2002. Microbiological characteristics in a zero-valent iron reactive barrier. Environ. Monit. Assess. 77 (3), 293–309.
[28] Roberts, L.A., Ball, W.P., Searson, P., Fairbrother, H., Vikesland, P.J., Klausen, J., Kohn, T., Kamath, R., Zimmermann, H.J., 2002. Influence of Groundwater Constituents on Longevity of Iron-Based Permeable Barriers. Final Report for the SERDP Project CU-1125, Air Force Research Laboratory, Tyndall AFB, FL.
[29] Kamolpornwijit, W., Liang, L., West, O.R., Moline, G.R., Sullivan, A.B., 2003. Preferential flow path development and its influence on long-term PRB performance: column study. J. Contam. Hydrol. 66 (3–4), 161–178.
[30] Liang, L., Sullivan, A.B., West, O.R., Moline, G.R., Kamolpornwijit, W., 2003. Predicting the precipitation of mineral phases in permeable reactive barriers. Environ. Eng. Sci. 20 (6), 635–653.
[31] Borden, R.C., 2007. Concurrent bioremediation of perchlorate and 1,1,1- trichloroethane in an emulsified oil barrier. J. Contam. Hydrol. 94 (1–2), 13–33.
[32] Zolla, V., Freyria, F.S., Sethi, R., Di Molfetta, A., 2009. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier. J. Environ. Qual. 38 (3), 897–908.
[33] Morrison, S.J., Spangler, R.R., 1992. Extraction of uranium and molybdenum from aqueous solutions: a survey of industrial materials for use in chemical barriers for uranium mill tailings remediation. Environ. Sci. Technol. 26 (10), 1922–1931.
[34] U.S. EPA, 1997. Permeable Reactive Subsurface Barriers for the Interception and Remediation of Chlorinated Hydrocarbon and Chromium (VI) Plumes in Ground Water. EPA/6ok00/F-97/008, U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, 4pp.
[35] NTUA, National Technical University of Athens, 2000. Literature Review: Reactive Materials and Attenuation Processes for Permeable Reactive Barriers. Long-term Performance of Permeable Reactive Barriers used for the Remediation of Contaminated Groundwater. 5th Framework Programme Research and Technological Development Project, Athens, Greece.
[36] Jirasko, D., 2012. Problems connected with use of permeable Reactive Barriers for groundwater treatment. Construction on brownfields. Czech Technical University in Prague, Prague, Czech Republic. pp. 145–154.