شبیه‌سازی استخراج ترکیبات آروماتیکی از برش روغنی در تماس دهنده دیسک دوار

نوع مقاله : پژوهشی

نویسندگان

1 استاد مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

2 دکتری مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

3 کارشناسی ارشد مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

چکیده

در این تحقیق، فرآیند استخراج مایع-مایع آروماتیک‌ها از روغن روانکار SAE 30 توسط فورفورال با استفاده از خواص فیزیکی (چگالی، وزن مخصوص و ضریب شکست) شبه جزء (پارافین، نفتن و آروماتیک) و پارامترهای مدل NRTL مورد مطالعه قرار گرفته است. دمای استخراج (348 و 338، 328 درجه کلوین) و نسبت حجمی حلال به خوراک (1، 4 و 7) به منظور تعیین مقادیر بهینه بررسی شدند. نتایج مدل‌سازی نشان داد که با افزایش نسبت حلال به خوراک و دمای استخراج، درصد وزنی فورفورال و بازده فاز باقیمانده کاهش می‌یابد. دقت مدل با شبیه‌سازی استخراج تک مرحله‌ای و با استفاده از نرم افزار ASPEN HYSYS سنجیده شد. توافق خوبی میان مقادیر پیش‌بینی شده و آزمایشگاهی بازده، میزان فورفورال، درصد ترکیبات و خواص فیزیکی فاز باقیمانده و استخراج‌ شده حاصل شد. حداکثر خطا بین مقادیر محاسبه شده و مقادیر صنعتی ترکیبات شبه جزء کمتر از %2 است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Aromatic Compounds Extraction from Lube Cut in Rotating Disc Contactor

نویسندگان [English]

  • Alireza Fazlali 1
  • Vahab Ghaleh Khondabi 2
  • Abas Nazari 3
1 Professor of Chemical Engineering, Faculty of Engineering, Arak University, Arak
2 Professor of Chemical Engineering, Faculty of Engineering, Arak University, Arak
3 M. Sc. of Chemical Engineering, Faculty of Engineering, Arak University, Arak
چکیده [English]

In this investigation, the liquid-liquid extraction process of aromatics from SAE 30 lube oil by furfural using the calculated physical properties (density, specific gravity, and refractive index) of pseudo-component (paraffinic, naphthenic, and aromatic) and the NRTL parameters has been studied. The extraction temperature (328, 338, and 348 °K) and the solvent to feed volume ratios (1, 4, and 7) were examined in order to determine their optimum values. The modeling results demonstrated that by increasing the solvent to feed ratio and the extraction temperature, the weight percentage of furfural and the yield of raffinate phase decrease. The accuracy of the model was checked by simulating single-stage extractions using ASPEN HYSYS. Good agreement was found between predicted and experimental values of yield, furfural content, composition, and physical properties for raffinates and extracts. The maximum errors between calculated values and industrial values of pseudo-component contents are less than 2%.

کلیدواژه‌ها [English]

  • Furfural
  • Liquid-liquid Extraction
  • Lubricating Oil
  • Phase Equilibria
  • Rotating Disc Contactor
[1] C.S. Hsu, P.R. Robinson, "Lubricant processes and synthetic lubricants", Petroleum Science and Technology, vol. 13, pp. 253–285, 2019.
[2] J.J. Espada, R. Rodriguez, "Prediction of density and refractive index in furfural + lubricating oil systems", Fluid Phase Equilibria, vol. 438, pp. 29-36, 2017.
[3] S.M. Fakhr Hosseini, T. Tavakoli, M.S. Hatamipour, "Extraction of aromatic hydrocarbons from lube oil using n-hexane as a co-solvent", Separation and Purification Technology, vol. 66, pp. 167-170, 2009.
[4] V.R. Ferro, J. de Riva, D. Sanchez, E. Ruiz. J. Palomar, "Conceptual design of unit operations to separate aromatic hydrocarbons from naphtha using ionic liquids. COSMO-based process simulations with multicomponent “real” mixture feed", Chemical Engineering Research and Design, vol. 94, pp. 632–647, 2015.
[5] H. Izza, M. Korichi, "Extraction of aromatic from lube oil using a surfactant as an additive", Petroleum Science and Technology, vol. 35, pp. 201-205, 2017.
[6] P. Amani, J. Asadi. E. Mohammadi, S. Akhgar, M. Esmaili. "Cooperative influence of D2EHPA and TBP on the reactive extraction of cobalt from sulfuric acid leach solution in a horizontal semi-industrial column", Journal of Environmental Chemical Engineering, vol. 5, pp. 4716–4727, 2017.
[7] S.A. Idrees, L.L. Mustafa, S.S. Saleem, "Improvement viscosity index of lubricating engine oil using low molecular weight compounds", Science Journal of University of Zakho, vol. 7, pp. 14-17, 2019.
[8] M. Hamida, E.N. Ahmed, E. Ebaa, F. Amal, H. Ahmed. "Utilization of binary mixtures of different solvents for aromatics extraction from a petroleum wax distillate feedstock". Egyptian Journal of Chemistry, vol. 62, pp. 1749– 1759, 2019.
[9] B. Coto, R. van Grieken, J.L. Pena, J.J. Espada, "A generalized model to predict the liquid-liquid equilibrium in the systems furfural + Lubricating oils", Chemical Engineering Science, vol. 61, pp. 8028-8039, 2006.
[10] J.J. Espada, B. Coto, J.L. Pena, "Liquid-liquid equilibrium in the systems furfural + light lubricating oils using UNIFAC", Fluid Phase Equilibria, vol. 259, pp. 201-209, 2007.
[11] U.K.A. Kumar, R. Mohan. "Liquid-liquid equilibria measurement of systems involving alkanes (heptane and dodecane), aromatics (benzene or toluene), and furfural", Journal of Chemical & Engineering Data, vol. 56, pp. 485–490, 2011.
[12] H. Habaki, Y. Yoshimura, R. Egashira, R, "Separation of aromatic components from light cycle oil by solvent extraction", Separation Science and Technology, vol. 54, pp. 1159–1166, 2019.
[13] G.W. Meindersma, A.B. de Haan, "Conceptual process design for aromatic/aliphatic separation with ionic liquids", Chemical Engineering Research and Design, vol. 86, pp. 745–752, 2008.
[14] P. Navarro, M. Larriba, N. Delgado-Mellado, P. Sánchez-Migallón, J. García, F. Rodríguez. "Extraction and recovery process to selectively separate aromatics from naphtha feed to ethylene crackers using 1-ethyl-3methylimidazolium thiocyanate ionic liquid". Chemical Engineering Research and Design, vol. 120, pp. 102–112, 2017.
[15] M. Kalem, F. Buchbender, A. Pfennig, "Simulation of hydrodynamics in RDC extraction columns using the simulation tool “ReDrop”", Chemical Engineering Research and Design, vol. 89, pp. 1–9, 2011.
[16] A.H. Mehrkesh, T. Tavakoli, M.S. Hatamipour, A. Karunanithi, "Modeling and simulation of a rotating-disk contactor for the extraction of aromatic hydrocarbons from a lube-oil cut", Industrial & Engineering Chemistry Research, vol. 52, pp. 9422-9432, 2013.
[17] A. Montahaie, M.S. Hatamipour, T. Tavakkoli, S.F. Aghamiri, "Liquid-liquid equilibrium of (lube-oil cut + furfural) in several solvent/feed ratios and at different temperatures", Journal of Chemical & Engineering Data, vol. 54, pp. 1871–1875, 2009.
[18] B. Coto, R. van Grieken, J.L. Pena, J.J. Espada, "A model to predict physical properties for light lubricating oils and its application to the extraction process by furfural", Chemical Engineering Science, vol. 61, pp. 4381-4392, 2006.
[19] R. van Grieken, B. Coto, J.L. Pena, J.J. Espada, "Application of a generalized model to the estimation of physical properties and description of the aromatic extraction from a highly paraffinic lubricating oil". Chemical Engineering Science, vol. 63, pp. 711-720, 2008.
[20] F.M. Vargas, W.G. Chapman, "Application of the One-Third rule in hydrocarbon and crude oil systems", Fluid Phase Equilibria, vol. 290, pp. 103–108, 2010.
[21] J.J. Espada., B.Coto, R. van Grieken, J.M. Moreno, "Simulation of pilot-plant extraction experiments to reduce the aromatic content from lubricating oils", Chemical Engineering and Processing: Process Intensification, vol. 47, pp. 1398-1403, 2008.
[22] M.C. Sánchez-Lemus, J.C. Okafor, D.P. Ortiz, F.F. Schoeggl, S.D. Taylor, F.G.A. Van Den Berg, H.W. Yarranton, "Improved density prediction for mixtures of native and refined heavy oil with solvents", Energy and Fuels, vol. 29, pp. 3052–3063, 2015.
[23] R. van Grieken, B. Coto, E. Romero, J.J. Espada, "Prediction of liquid−liquid equilibrium in the system furfural + heavy neutral distillate lubricating oil", Industrial & Engineering Chemistry Research, vol. 44, pp. 8106-8112, 2005.
[24] S.M. Fakhr Hoseini, M.S. Hatamipour, T. Tavakoli, A. Montahaee, "Experimental liquid−liquid equilibrium of (lube cut + furfural + 2,2,4-tri-methyl pentane) ternary system from T = 323.15−343.15 K and simulation with NRTL", Industrial & Engineering Chemistry Research, vol. 48, pp. 9325-9330, 2009.
[25] S.M. Fakhr Hosseini, T. Tavakoli, M.S. Hatamipour, "Extraction of aromatic hydrocarbons from lube oil using n-hexane as a co-solvent", Separation and Purification Technology, vol. 66, pp. 167-170, 2009.
[26] A.H. Mehrkesh, S. Hajimirzaee, M.S. Hatamipour, T. Tavakoli, "Artificial neural network for modeling the extraction of aromatic hydrocarbons from lube oil cuts", Chemical Engineering & Technology, vol. 34, pp. 459-464, 2011.
[27] S.M. Fakhr Hosseini, T. Tavakoli, M.S. Hatamipour, A.H. Mehrkesh, "Mathematical modeling of RDC column in extraction of base oil and computing of the energy saving", Journal of Chemical Technology & Biotechnology, vol. 88, pp. 1289-1294, 2013.
[28] M.T. Fouladvand, J. Asadi, M.N. Lotfollahi, "Simulation and optimization of aromatic extraction from lube oil cuts by liquid-liquid extraction", Chemical Engineering Research and Design, vol. 165, pp. 118-128, 2021.
[29] "Annual book of ASTM standards", American Society for Testing and Materials. West Conshohocken. PA: ASTM International, 2014.
[30] J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, "Molecular thermodynamics of fluid-phase equilibria", New Jersey: Prentice-Hall, 2000.