جداسازی آب و نفت به کمک مش استیل پوشش‌دهی شده با نانوصفحات کربن نیترید گرافیتی (g-C3N4) مزوپور

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی شیمی، دانشگاه امیرکبیر، تهران، ایران

2 استاد، هیئت‌علمی، مرکز تحقیقات نانوفناروی، پژوهشگاه صنعت نفت، تهران، ایران

3 دانشیار، دانشکده مهندسی شیمی، دانشگاه امیرکبیر، تهران، ایران

چکیده

وجود آب در نفت اغلب منجر به مشکلات گزارش شده در منابع از محدودیت در خط جریان فشار، کاهش تولید، خوردگی خط لوله، نقص عملکرد پمپ‌ها، مسمومیت کاتالیست‌های جریان پایین‌دستی پالایشگاه کاتالیزورها و سایر مشکلات مرتبط با تجهیزات تولید و ستون تقطیر می‌شود. در این مطالعه فیلتر پوشش‌دهی شده با نانوصفحات کربن نیترید گرافیتی (g-C3N4) آماده سازی شد و به عنوان جایگزینی برای امولسیون‌زداها برای جداسازی آب از نفت در مرحله ی قبل از ورود نفت به پالایشگاه پیشنهاد شد. بدین منظور، نانوصفحات کربن نیترید گرافیتی مزوپور با روش پلی کاندنسیشن حرارتی و با به کار گیری روش قالب سخت سنتز شد و روی سطح مش استیل ضد زنگ به کمک اسپری پاششی پوشش داده شد. سطح مش پوشش‌دهی شده با نانوورق g-C3N4 خواص ترشوندگی آبدوستی در هوا و فوق نفت‌گریزی زیر آب را نشان داد. نتایج جداسازی آب و نفت به کمک فیلتر آماده شده نشان داد که آب با فلاکس عبوری 2200L.m-2.h-1 با بازده جداسازی تقریبأ بیشتر از %99 از سطح عبور می‌کند، در حالیکه نفت عبور نکرده و در بالای فیلتر باقی می‌ماند. تکرارپذیری فیلتر برای جداسازی آب و نفت مورد بررسی قرار گرفت و نتایج نشان داد که بازده جداسازی و فلاکس عبوری فیلتر پس از 25 مرحله تکرار جداسازی آب و نفت تغییر ناچیزی داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Oil-Water Separation by Means of Stainless Steel Mesh Coated with Mezopore Graphitic Carbon Nitride (g-C3N4) Nanosheets

نویسندگان [English]

  • sonia Mir 1
  • Alimorad rashidi 2
  • Abbas Naderifar 3
1 Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
2 Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran
3 Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
چکیده [English]

The presence of water in the oil often leads to problems reported in the literature from pressure flow limitations, reduced production, pipeline corrosion, pump malfunctions, poisoning of downstream catalysts in catalyst refineries, and other problems related to production equipment and distillation column. In this study, a coated filter with graphitic nitride carbon nanosheets (g-C3N4) was prepared and proposed as an alternative to demulcifiers to separate water from oil before entering the petroleum refinery. For this purpose, mesopore graphitic nitride carbon nanosheets are synthesized by thermal polycondensation method using hard-template approach and coated on the surface of stainless steel mesh using spray gun. The surface of the g-C3N4 coated mesh showed the hydrophilic/underwater superoleophobic wettability properties. The results of water-oil separation using the prepared filter showed that water permeated through the filter with a flux of 2200 L.m-2.h-1, while oil does not pass and remains on top of the filter with the separation efficiency more than 99%. The durability of the filter for water and oil separation was investigated and the results showed that the separation efficiency and flux after 25 cycles of water-oil separation have changed slightly.

کلیدواژه‌ها [English]

  • Water-Oil Separation
  • Nanofilters
  • Graphitic Carbon Nitride (g-C3N4)
  • Hydrophilicity and Oleophobicity
[1] Dejam, M., H. Hassanzadeh, and Z. Chen, Shear dispersion in combined pressure-driven and electro-osmotic flows in a channel with porous walls. Chemical Engineering Science, 2015. 137: pp. 205-215.
[2] Zolfaghari, R., et al., Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Separation and Purification Technology, 2016. 170: pp. 377-407.
[3] Daniel-David, D., et al., Destabilisation of water-in-crude oil emulsions by silicone copolymer demulsifiers. Oil & Gas Science and Technology-Revue de l'IFP, 2008. 63(1): pp. 165-173.
[4] Aditya, N., et al., Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food chemistry, 2015. 173: pp. 7-13.
[5] Abdulredha, M.M., H.S. Aslina, and C.A. Luqman, Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. Arabian Journal of Chemistry, 2018.
[6] Liu, J., et al., Demulsification of crude oil-in-water emulsions driven by graphene oxide nanosheets. Energy & Fuels, 2015. 29(7): pp. 4644-4653.
[7] Salam, K., et al., Improving the demulsification process of heavy crude oil emulsion through blending with diluent. Journal of Petroleum Engineering, 2013. 2013.
[8] Kang, W., et al., ​ Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 545: pp. 197-204.
[9] Liu, J., et al., Recyclable magnetic graphene oxide for rapid and efficient demulsification of crude oil-in-water emulsion. Fuel, 2017. 189: pp. 79-87.
[10] Yi, M., J. Huang, and L. Wang, Research on Crude Oil Demulsification Using the Combined Method of Ultrasound and Chemical Demulsifier. Journal of Chemistry, 2017.
[11] Martínez-Palou, R., et al., Demulsification of heavy crude oil-in-water emulsions: A comparative study between microwave and thermal heating. Fuel, 2013. 113: pp. 407-414.
[12] Abdurahman, N., et al., Pipeline transportation of viscous crudes as concentrated oil-in-water emulsions. Journal of Petroleum Science and Engineering, 2012. 90: pp. 139-144.
[13] Marquez-Silva, R., et al. Chemical dehydration: Correlations between crude oil, associated water and demulsifier characteristics, in real systems. in International Symposium on Oilfield Chemistry. 1997. Society of Petroleum Engineers.
[14] Hu, L., et al., Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS nano, 2015. 9(5): pp. 4835-4842.
[15] Tao, M., et al., An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Advanced Materials, 2014. 26(18): pp. 2943-2948.
[16] Liu, J., et al., An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection. Scientific reports, 2020. 10(1): pp. 1-11.
[17] Moakhar, R.S., et al., One-pot microwave synthesis of hierarchical C-doped CuO dandelions/g-C3N4 nanocomposite with enhanced photostability for photoelectrochemical water splitting. Applied Surface Science, 2020. 530: pp. 147271.
[18] Zhang, Y., et al., Facial fabrication of superhydrophobic ZIF-7 coatings with fast self-healing ability for ultra-efficient emulsion separation. Separation and Purification Technology, 2021. 276: pp. 119272.
[19] Chen, J., et al., Enhanced oil adsorption and nano-emulsion separation of nanofibrous aerogels by coordination of pomelo peel-derived biochar. Industrial & Engineering Chemistry Research, 2020. 59(18): pp. 8825-8835.
[20] Chen, Y., et al., Under-oil superhydrophilic TiO2/poly (sodium vinylphosphonate) nanocomposite for the separation of water from oil. Separation and Purification Technology, 2020. 251: pp. 117397.
[21] Amirpoor, S., R.S. Moakhar, and A. Dolati, A novel superhydrophilic/superoleophobic nanocomposite PDMS-NH2/PFONa-SiO2 coated-mesh for the highly efficient and durable separation of oil and water. Surface and Coatings Technology, 2020. 394: pp. 125859.
[22] Ghadimi, M.R., et al., Developing a new superhydrophilic and superoleophobic poly (4-(1-vinyl-1H-imidazol-3-ium-3-yl) butane-1-sulfonate): vinyl imidazole@ Perfluorooctanoic acid@ SiO 2 coated stainless steel mesh for highly efficient, stable, and durable oil/water separation. Journal of Coatings Technology and Research, 2021. 18(2): pp. 511-521.
[23] Cramer, N.B. and C.N. Bowman, Kinetics of thiol–ene and thiol–acrylate photopolymerizations with real‐time fourier transform infrared. Journal of Polymer Science Part A: Polymer Chemistry, 2001. 39(19): pp. 3311-3319.
[24] Crick, C.R., J.A. Gibbins, and I.P. Parkin, Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil–water separation. Journal of Materials Chemistry A, 2013. 1(19): pp. 5943-5948.
[25] Jung, Y.C. and B.J.L. Bhushan, Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. 2009. 25(24): pp. 14165-14173.