بررسی پارامترهای سنگ و سیال در انتخاب مناسب‌ترین غلظت نانو کامپوزیت در مخازن ماسه سنگی

نوع مقاله : پژوهشی

نویسنده

استادیار گروه مهندسی شیمی و نفت، دانشگاه ایلام، ایلام

چکیده

این مطالعه اثر یک نانو کامپوزیت جدید (ZnO/SiO2/Xanthan) را برای انتخاب مناسب­ترین غلظت متناسب با محیط متخلخل ماسه سنگی مورد مطالعه قرار می­دهد. این مطالعه برای اولین بار در شرایط مخزنی و مخازن ماسه سنگی صورت گرفته است. ابتدا مورفولوژی نانوکامپوزیت­ها با استفاده از آزمایش­های  XRDو SEM  مورد بررسی قرار گرفت. سپس اثر نانو کامپوزیت بر تغییرات ترشوندگی، کشش سطحی، ویسکوزیته، پتانسیل زتا،pH  و چگالی در غلظت­های مختلف نانوکامپوزیت در شرایط مخزن مورد بررسی قرار گرفت. بر اساس اطلاعات ترشوندگی و زتا پتانسیل در این مطالعه، بهترین غلظت برای آزمایش­های دینامیک سیال انتخاب شد. انتخاب بهترین غلظت سیال می­تواند بسیاری از مشکلات مثل کاهش بازیابی نفت در اثر مسدود کردن فضای خالی سنگ­ها را کاهش دهد. با توجه به کمترین زاویه تماس (°36.46) و بالاترین مقدار مطلق زتا پتانسیل (mV49.68-)، ppm 40 به‌عنوان بهترین غلظت برای انجام آزمایش­های دینامیک سیال انتخاب شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating rock and fluid parameters in choosing the most appropriate nanocomposites concentration in sandstone reservoirs

نویسنده [English]

  • Yaser Ahmadi
Chemical and Petroleum Engineering Department, Ilam University, Ilam, Iran
چکیده [English]

This study investigates the effect of new nanocomposites (ZnO/SiO2/Xanthan) for the most appropriate selection of nanocomposites concentration in sandstone porous media. This study has been done for the first time in sandstone reservoir. First, the morphology of nanocomposites was investigated using XRD, SEM tests. Then, the effect of nanocomposite on changes in wettability, surface tension, viscosity, zeta potential, pH, and density in different concentrations of nanocomposite in tank conditions was investigated. Based on the results of this study this study, the optimal concentration was selected for fluid dynamic tests. The optimum choice of fluid can reduce many problems, such as reducing oil recovery due to blocking the pores and throat of rocks. According to lowest contact angle (36°), highest zeta potential (-49.68 mV) in the presence of nanocomposites, 40 ppm was chosen as the optimum concentration.

کلیدواژه‌ها [English]

  • Sandstone
  • Nanocomposites
  • Interfacial Tension
  • Xanthan
  • Silica
[1] Ahmadi, Y., Mohammadi, M., Sedighi, M. Chapter 1- Introduction to chemical enhanced oil recovery, In Enhanced Oil Recovery Series, Chemical Methods, Gulf Professional Publishing., pp. 1-32, 2018.
[2] Ahmadi, Y., “Relationship between Asphaltene Adsorption on the Surface of Nanoparticles and Asphaltene Precipitation Inhibition during Real Crude Oil Natural Depletion Tests”, Iranian Journal of Oil and Gas Science and Technology Vol. 10, No. 3, pp. 69-82, 2021.
[3] E. Jafarbeigi, E., Y. Ahmadi, M. Mansouri, S. Ayatollahi, “An experimental core flooding investigation of new ZnO-Al2O3 Nanocomposites for enhanced oil recovery in carbonate reservoir” ACS omega, vol. 43, pp. 39107–39121, 2022.
[4] M. Mansouri, Y. Ahmadi, E. Jafarbeigi, “Introducing a new method of using nanocomposites for preventing asphaltene aggregation during real static and dynamic natural depletion tests”, Energy Sources, Part A, vol. 44, pp. 7499−7513, 2022.
[5] Ahmadi, Y., Malekpour, M., Kikhavani, T., Bayati, “The study of the spontaneous oil imbibition in the presence of new polymer-coated nanocomposites compatible with reservoir conditions”, Petroleum Science and Technology, 2022. 
[6] Y. Ahmadi, “Improving Fluid Flow through Low Permeability Reservoir in the presence of Nanoparticles: An Experimental Core flooding WAG tests”, Iranian Journal of Oil and Gas Science and Technology, vol. 1, pp. 1-15, 2022.
‏[7] Y. Ahmadi, M. Mansouri, “An experimental investigation of using Ni-doped ZnO–ZrO2 nanoparticles as a new asphaltene deposition inhibitor in ultra low carbonate porous media”‏, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 4, pp. 9429-9447, 2022.
[8]  Ahmadi, Y., Mansouri, M., Jafabeigi, E., “Improving Simultaneous Water Alternative Associate Gas Tests in the Presence of Newly Synthesized γ-Al2O3/ZnO/Urea Nano-Composites, An Experimental Core Flooding Tests”, ACS omega, Vol. 8, No. 1, pp. 1443–1452, 2023.
[9] M. Golmohammadi, S. Mohammadi, H, Mahani, S. Ayatollahi, “The non-linear effect of oil polarity on the efficiency of low salinity waterflooding: A pore-level investigation”, Journal of Molecular Liquids, vol. 346, 117069, 2022.
[10] B. A, Suleimanov, F.S. Ismailov, E.F, Veliyev, “Nanofluid for Enhanced Oil Recovery”, J. Pet. Sci. En, vol, 78, pp. 431−437, 2021.
[11] F. Haeri, D.N. Rao, “Precise Wettability Characterization of Carbonate Rocks to Evaluate Oil Recovery Using Surfactant-Based Nanofluids”, Energy Fuels, vol. 33, pp. 8289−8301, 2019.
[12] M. Mohajeri, M. Hemmati, A.S. Shekarabi, “An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel”, J. Pet. Sci. Eng, vol. 126, pp. 162−173, 2015.
[13] Y. Ahmadi, S.E. Eshraghi, P. Bahrami, et al., “Comprehensive Water–Alternating-Gas (WAG) injection study to evaluate the most effective method based on heavy oil recovery and asphaltene precipitation tests”‏, J. Pet. Sci. Eng, vol. 133, pp. 123-129, 2015.‏
[14] Y. Ahmadi, R. Kharrat, A.Hashemi, P. Bahrami, S. Mahdavi, “The effect of temperature and pressure on the reversibility of asphaltene precipitation”‏, Petroleum science and technology, vol. 18, pp. 2263-2273‏, 2014.
[15] Y. Ahmadi, M. Hassanbeygi, R. Kharrat, “The Effect of Temperature and Injection Rate during Water Flooding Using Carbonate Core Samples: An Experimental Approach”, Iranian Journal of Oil and Gas Science and Technology, vol. 5, pp. 18-24, 2016.
[16] Y. Ahmadi, B. Aminshahidy, “Improving water-oil relative permeability parameters using new synthesized calcium oxide and commercial silica nanofluids”, Iranian Journal of Oil and Gas Science and Technology, vol. 8, pp. 58-72, 2019.
[18] P.K., Vabbina, R, Sinha, A. Ahmadivand, et al., “Sonochemical synthesis of a zinc oxide core–shell nanorod radial p–n homojunction ultraviolet photodetector”, ACS applied materials & interfaces, vol. 23, pp. 19791-19799, 2017.
[19] S.M., Sajadi, K. Kolo, M. Pirouei, S.A., Mahmud, et al., “Natural iron ore as a novel substrate for the biosynthesis of bioactive-stable ZnO@ CuO@ iron ore NCs: a magnetically recyclable and reusable superior nanocatalyst for the degradation of organic dyes, reduction of Cr (vi) and adsorption of crude oil aromatic compounds, including PAHs”, RSC advances, vol. 8, pp. 35557-35570, 2018.
[20]  J.A., Ali, K, Kolo, S.M., Sajadi, A.K, Khaksar Manshad, et al., “Modification of LoSal water performance in reducing interfacial tension using green ZnO/SiO2 nanocomposite coated by xanthan”, Applied Nanoscience, vol. 9, pp. 397–409, 2019.
[21] Y. Ahmadi, M. Mansouri, M., “Using New Synthesis Zirconia-Based NCs for Improving Water Alternative Associated Gas Tests Considering Interfacial Tension and Contact Angle Measurements”, Energy Fuels, vol. 35, pp. 16724-16734, 2021.
[22] F.O, Asl, G. Zargar, A. Khaksar Manshad, M. Arif, S. Iglauer, A. Keshavarz, “Impact of PAM-ZnO nanocomposite on oil recovery”, Micro & Nano Letters, vol. 14, pp. 638-641, 2022.