مروری بر منابع انتشار، روش‌های جداسازی و محصولات با ارزش قابل تولید از CO2

نوع مقاله : مروری

نویسندگان

1 استادیار مهندسی شیمی، دانشگاه صنعتی خاتم الانبیاء (ص) بهبهان، بهبهان، ایران

2 دانشکده فنی، گروه مهندسی شیمی، دانشگاه گیلان، رشت، ایران

چکیده

افزایش انتشار CO2 عامل اصلی گرمایش زمین بوده و چالش­های زیست­محیطی نامطلوبی را در پی دارد. بر این اساس، یافتن روش­هایی برای تبدیل CO2 به محصولات مفید می­تواند از یک سو به کاهش اثرات مخرب زیست­محیطی این ماده کمک کند و از سوی دیگر صرفه اقتصادی فرایند را به جهت تولید محصولات با ارزش افزایش دهد. بدین ترتیب، در این مقاله ابتدا به بررسی منابع انتشار CO2 پرداخته شده و سپس روش­های جداسازی این گاز بیان گردید. همچنین در ادامه موارد مصرف این ماده در صنایع مختلف مطرح شد. سپس مباحثی در مورد اوره که یکی از محصولاتی است که در حال حاضر به مقدار فراوان از CO2 تولید می­شود بیان شد. نتایج بدست آمده از مطالعات گوناگون نشان داد که تماس­دهنده­های غشایی یکی از فناوری­های موثر در جذب CO2 می­باشند که بررسی­هایی نیز در این زمینه انجام شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Overview of Emission Sources, Separation Methods and Valuable Crops Producible from CO2

نویسندگان [English]

  • Parya Amirabedi 1
  • Khadijeh pourkhanali 2
1 Assistant Professor of Chemical Engineering, Behbahan Khatam Alanbia University of Technology
2 Department of Chemical Engineering, Faculty of Eng., University of Guilan, Rasht, Iran
چکیده [English]

The increase in CO2 emissions is the main cause of global warming and causes adverse environmental challenges. Based on this, finding ways to convert CO2 into useful products can help reduce the harmful environmental effects of this substance on the one hand, and increase the economic efficiency of the process to produce valuable products on the other hand. Thus, the sources of CO2 emissions were investigated first, and then the methods of separating of CO2 were described. Also, the use cases of CO2 in various industries were discussed. The results showed that membrane contactors are one of the effective technologies in CO2 absorption. Also, the product which currently produced in large quantities from CO2 is urea. Then there are some discussions about urea. The results of studies showed that membrane contactors are one of the effective technologies in CO2 absorption, so some investigations were carried out in this field. 

کلیدواژه‌ها [English]

  • CO2
  • the Environment
  • Valuable Chemicals
  • Membrane Contactors
[1] F. Russo. F. Galiano. A. Iulianelli, et al.. "Biopolymers for sustainable membranes in CO2 separation: A review". Fuel Processing Technology. vol. 213  pp. 106643,  2021.
[2] A. A. Olajire. "CO2 capture and separation technologies for end-of-pipe applications–a review". Energy, vol. 35 (6), pp. 2610-2628,  2010.
[3] X. Chen. G. Liu. W. Jin. "Natural gas purification by asymmetric membranes: An overview". Green Energy & Environment., vol. 6 (2), pp. 176-192,  2021.
[4] A. I. Osman. M. Hefny. M. Abdel Maksoud, et al.. "Recent advances in carbon capture storage and utilisation technologies: a review", Environmental Chemistry Letters. vol. 19 (2), pp. 797-849,  2021.
[5] I. Omae., "Recent developments in carbon dioxide utilization for the production of organic chemicals". Coordination Chemistry Reviews. vol. 256 (13-14), pp. 1384-1405,  2012.
[6] Z. Zhang. S.-Y. Pan. H. Li, et al.. "Recent advances in carbon dioxide utilization", Renewable and sustainable energy reviews. vol. 125,  pp. 109799,  2020.
[7] A. Mohaghar. M. Hosseinzadeh. H. Amoozad, et al., "Evaluating the carbon dioxide emission reduction policies of the construction industry using dynamic modeling", Strategic Studies of Globalization Journal, vol. 9 (30), pp. 307-328,  2019.
[8]  A. Mardani. D. Streimikiene. F. Cavallaro, et al., "Carbon dioxide (CO2) emissions and economic growth: A systematic review of two decades of research from 1995 to 2017", Science of the total environment, vol. 649, pp. 31-49, 2019.
[9] S. M. Rudin. Z. Muis. H. Hashim, et al., "Overview of carbon reduction, capture, utilization and storage: Development of new framework", Chemical Engineering Transactions, vol. 56, pp. 649-654.,  2017.
[10] R. Shirmohammadi. A. Aslani. R. Ghasempour, et al., "CO2 utilization via integration of an industrial post-combustion capture process with a urea plant: Process modelling and sensitivity analysis", Processes. vol. 8 (9), pp. 1144,  2020.
[11]     D. Y. Leung. G. Caramanna. M. M. Maroto-Valer, "An overview of current status of carbon dioxide capture and storage technologies", Renewable and sustainable energy reviews, vol. 39,  pp. 426-443, 2014.
[12] P. Amirabedi. A. Akbari. R. Yegani, et al., "CO2 Stripping from Monoethanolamine through a Polypropylene/CH3SiO2 Composite Hollow‐Fiber Membrane Contactor", Chemical Engineering & Technology, vol. 45 (8), pp. 1512-1521, 2022.
[13] T. Shires. C. Loughran., "Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry", 2009.
[14] D. Johansson. J. Rootzén. T. Berntsson, et al., "Assessment of strategies for CO2 abatement in the European petroleum refining industry", Energy. vol. 42 (1), pp. 375-386, 2012.
[15] S. Al-Salem, "Carbon dioxide (CO2) emission sources in Kuwait from the downstream industry: Critical analysis with a current and futuristic view", Energy. vol. 81, pp. 575-587, 2015.
[16] M. R. Lotfalipour. M. A. Falahi. M. Ashena., "Economic growth, CO2 emissions, and fossil fuels consumption in Iran", Energy. vol. 35 (12), pp. 5115-5120,  2010.
[17] M. Karmellos. V. Kosmadakis. P. Dimas, et al., "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK", Energy, vol. 231, pp. 120861, 2021.
[18] f. Goudarzvand. K. Kashefi, "Evaluation of Greenhouse Gases Emission Inventory in Iranian Gas Transmission Facilities and Pipeline", Iranian Gas Engineering Journal, vol. 5 (7), pp. 63-71,  2018.
[19] P. Amirabedi. A. Akbari. R. Yegani, "Fabrication of hydrophobic PP/CH3SiO2 composite hollow fiber membrane for membrane contactor application", Separation and Purification Technology, vol. 228, pp. 115689, 2019.
[20] H. Gai. A. Wang. J. Fang, et al., "Clean combustion and flare minimization to reduce emissions from process industry", Current Opinion in Green and Sustainable Chemistry, vol. 23, pp. 38-45, 2020.
[21] A. Barati. V. Pirozfar, "Flare gas review in oil and gas industry". J Biochem, 2019.
[22] P. Madejski. K. Chmiel. N. Subramanian, et al., "Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies", Energies. vol. 15 (3) pp. 887,  2022.
[23] E. Favre, "Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption?", Journal of Membrane Science, vol. 294 (1-2), pp. 50-59,  2007.
[24] T. Lungkadee. T. Onsree. S. Tangparitkul, et al., "Technical and economic analysis of retrofitting a post-combustion carbon capture system in a Thai coal-fired power plant", Energy Reports. vol. 7,  pp. 308-313, 2021.
[25] O. Otitoju. E. Oko. M. Wang, "Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation", Applied Energy. vol. 292, pp. 116893, 2021.
[26] N. El Hadri. D. V. Quang. E. L. Goetheer, et al., "Aqueous amine solution characterization for post-combustion CO2 capture process", Applied Energy. vol. 185, pp. 1433-1449, 2017.
[27] H. Ababneh. S. A. Al-Muhtaseb, "An empirical correlation-based model to predict solid-fluid phase equilibria and phase separation of the ternary system CH4-CO2-H2S", Journal of Natural Gas Science and Engineering, vol. 94, pp. 104120, 2021.
[28] Y. Zhang. J. Sunarso. S. Liu, et al., "Current status and development of membranes for CO2/CH4 separation: A review", International Journal of Greenhouse Gas Control, vol. 12, pp. 84-107, 2013.
[29] A. Allangawi. E. F. Alzaimoor. H. H. Shanaah, et al., "Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes", vol. 9 (1), pp. 17, 2023.
[30] C. Ruiz. L. Rincón. R. R. Contreras, et al., "Sustainable and negative carbon footprint solid-based NaOH technology for CO2 capture", ACS Sustainable Chemistry & Engineering, vol. 8 (51), pp. 19003-19012, 2020.
[31] W. M. Budzianowski, "Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review", International Journal of Global Warming, vol. 7 (2), pp. 184-225,  2015.
[32] H. Ruan. S. Wu. X. Chen, et al., "Capturing CO2 with NaOH solution from reject brine via an integrated technology based on bipolar membrane electrodialysis and hollow fiber membrane contactor", Chemical Engineering Journal, vol. 450,  pp. 138095, 2022.
[33] P. Valeh-e-Sheyda. N. F. Nafchi, "Carbon dioxide capture by the green aqueous sodium hydroxide-glycerol solution in a gas-liquid microchannel contactor", Journal of Environmental Chemical Engineering, vol. 10 (6), pp. 108666, 2022.
[34] A. Elhambakhsh. M. R. Zaeri. M. Mehdipour, et al., "Synthesis of different modified magnetic nanoparticles for selective physical/chemical absorption of CO2 in a bubble column reactor", Journal of Environmental Chemical Engineering, vol. 8 (5), pp. 104195, 2020.
[35] A. Sattari. A. Ramazani. H. Aghahosseini, et al., "The application of polymer containing materials in CO2 capturing via absorption and adsorption methods", Journal of CO2 Utilization. vol. 48, pp. 101526, 2021.
[36] J. Rakowski. P. Bocian. A. Celińska, et al., "Zastosowanie pętli chemicznych w energetyce". Energetyka, vol.  (4), pp. 208--213, 2016.
[37] S. Bhavsar. M. Najera. A. More, et al., Chemical-looping processes for fuel-flexible combustion and fuel production, In Reactor and Process Design in Sustainable Energy Technology, pp 233-280, Elsevier 2014.
[38] P. Tilak. M. M. El-Halwagi, "Process integration of Calcium Looping with industrial plants for monetizing CO2 into value-added products", Carbon Resources Conversion, vol. 1 (2), pp. 191-199,  2018.
[39] M. Kanniche. R. Gros-Bonnivard. P. Jaud, et al.. "Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture", Applied Thermal Engineering, vol. 30 (1), pp. 53-62, 2010.
[40] H. Ababneh. S. A. Al‐Muhtaseb, "A review on the solid–liquid–vapor phase equilibria of acid gases in methane", Greenhouse Gases: Science and Technology, vol. 12 (4), pp. 566-579, 2022.
[41] L. Baxter. A. Baxter. S, Burt In Cryogenic CO2 capture as a cost-effective CO2 capture process, International Pittsburgh Coal Conference, 2009.
[42] K. Maqsood. A. Ali. R. Nasir, et al., "Experimental and simulation study on high-pressure VLS cryogenic hybrid network for CO2 capture from highly sour natural gas", Process Safety and Environmental Protection, vol. 150,  pp. 36-50, 2021.
[43] M. Tuinier. M. van Sint Annaland. J. Kuipers, "A novel process for cryogenic CO2 capture using dynamically operated packed beds—An experimental and numerical study", International Journal of Greenhouse Gas Control, vol. 5 (4), pp. 694-701, 2011.
[44] M. J. Tuinier. M. van Sint Annaland, "Biogas purification using cryogenic packed-bed technology", Industrial & Engineering Chemistry Research, vol. 51 (15), pp. 5552-5558, 2012.
[45] E. Knapik. P. Kosowski. J. Stopa, "Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy", Chemical Engineering Research and Design, vol. 131,  pp. 66-79, 2018.
[46] C. Song. Q. Liu. S. Deng, et al., "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges". Renewable and sustainable energy reviews, vol. 101, pp. 265-278, 2019.
[47] E. Drioli. E. Curcio. G. Di Profio. "State of the art and recent progresses in membrane contactors", Chemical Engineering Research and Design, vol. 83 (3), pp. 223-233, 2005.
[48] S. Raveshiyan. P. Amirabedi. R. Yegani, et al., "CO2 absorption through PP/fSiO2 nanocomposite hollow fiber membrane contactor", Polyolefins Journal, vol. 9 (1), pp. 61-71, 2022.
[49] M. Fosi-Kofal. A. Mustafa. A. F. Ismail, et al., "PVDF/CaCO3 composite hollow fiber membrane for CO2 absorption in gas–liquid membrane contactor", Journal of Natural Gas Science and Engineering, vol. 31,  pp. 428-436, 2016.
[50] Y. Zhang. R. Wang, "Fabrication of novel polyetherimide-fluorinated silica organic-inorganic composite hollow fiber membranes intended for membrane contactor application", Journal of Membrane Science, vol. 443,  pp. 170-180, 2013.
[51] A. Ghaee. A. Ghadimi. B. Sadatnia, et al., "Synthesis and characterization of poly(vinylidene fluoride) membrane containing hydrophobic silica nanoparticles for CO2 absorption from CO2/N2 using membrane contactor", Chemical Engineering Research and Design, vol. 120  pp. 47-57, 2017.
[52] M. Rezaei. A. F. Ismail. G. Bakeri, et al., "Effect of general montmorillonite and Cloisite 15A on structural parameters and performance of mixed matrix membranes contactor for CO2 absorption", Chemical Engineering Journal, vol. 260, pp. 875-885, 2015.
[53] X. Wu. B. Zhao. L. Wang, et al., "Superhydrophobic PVDF membrane induced by hydrophobic SiO2 nanoparticles and its use for CO2 absorption", Separation and Purification Technology. vol. 190 (Supplement C), pp. 108-116, 2018.
[54] J. N. Knudsen. J. Andersen. J. N. Jensen, et al., "Results from test campaigns at the 1 t/h CO2 post-combustion capture pilot-plant in Esbjerg under the EU FP7 CESAR project", PCCC1 Abu Dhabi, 2011.
[55] Z. AlDhaheri. S. A. Ajish. S. Rahman, et al., In A Novel Global Warming Solution: Use of Flue Gas to Produce Urea, MATEC Web of Conferences, EDP Sciences: 2018.
[56] N. N. Sisakht. M. M. rouzbahani. S. Sabzalipour, "Simulation of methanol synthesis by hydrogenation of carbon dioxide recovered from combustion gases of Fluid Catalytic Cracking Unit of Abadan Refinery", Journal of Environmental Health Engineering, vol. 9 (1), pp. 101-124,  2021.
[57] D. Wang. Z. Xie. M. D. Porosoff, et al., "Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics", Chem. vol. 7 (9), pp. 2277-2311,  2021.
[58] P. Yaashikaa. P. S. Kumar. S. J. Varjani, et al., "A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products", Journal of CO2 Utilization, vol. 33, pp. 131-147,  2019.
[59] B. Hu. C. Guild. S. L. Suib, "Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products", Journal of CO2 Utilization, vol. 1,  pp. 18-27,  2013.
[60] K. Dalane. Z. Dai. G. Mogseth, et al., "Potential applications of membrane separation for subsea natural gas processing: A review", Journal of Natural Gas Science and Engineering. vol. 39,  pp. 101-117,  2017.