عملکرد غشاهای کامپوزیت سرامیکی در تولید و خالص سازی هیدروژن در راکتورهای ریفرمینگ بخار

نوع مقاله: علمی ترویجی

نویسندگان

1 دانشگاه تربیت مدرس

2 عضو هیات علمی دانشکاه تربیت مدرس

3 پژوهشگاه صنعت نفت

چکیده

در این پژوهش به ارزیابی عملکردغشا های سرامیکی کامپوزیت آلومینا/سیلیکا در خالص سازی هیدروژن پرداخته شد. ساخت غشاهای مورد نظر با استفاده از اصلاح پایه توسط لایه نشانی متوالی سُل- ژل و ایجاد لایه غشایی توسط انباشت شیمیایی بخار (CVD) انجام شد. شناسایی ساختار غشاهای سنتز شده توسط آنالیزهای مختلف (SEM، DLS)، تشکیل لایه کامپوزیت متراکم با ضخامت 120-80 نانومتر را نشان داد. ارزیابی عملکرد غشا در جداسازی هیدروژن میزان تراوایی این گاز را در محدوده mol.m-2.s-1.Pa-1 7-10 × 11-8 و گزینش پذیری را در محدوده 100، 200 و 500 در مقابل CO2، N2 و CH4 حاصل کرده است. عملکرد غشاهای در یک راکتور غشایی در ریفورمینگ متان عملکرد مطلوب راکتور غشایی نسبت به راکتور بستر ثابت را نشان می‌دهد. به‌طوریکه میزان تبدیل متان در راکتور غشایی در 800 درجه سانتیگراد تا 95% بالا رفته و بازده تولید هیدروژن نسبت به راکتور بستر ثابت تا 30% بالاتر به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

performance of nano composite ceramic membrane for production and purification of hydrogen in steam reforming reactor

نویسنده [English]

  • Mahdi Amanipour 1
2 Faculty member Tarbiat Modares university
چکیده [English]

In this research work some ceramic membranes with composite structure of Al2O3/SiO2 are synthesized and their performance in production and purification of hydrogen in steam reforming reactor are investigated. These membranes are characterized by SEM, DLS methods. Composite layer of 80-100 nano meter was formed. Permeation of hydrogen is measured as 7-10 *11-8 mol.m-2s-1.pa-1 and selectivity in the rane of 100, 200, 500 with N2, CO2 and CH4 ia obtained. The conversion of methane is raised to 95% in 800 C in a steam reformin reactor. The production of hydrogen in comparison to fixed bed reactor has increased by 30%.

کلیدواژه‌ها [English]

  • ceramic composite membrane
  • membrane reactor
  • methane reforming
[1] Hinchliffe A. B., Porter K. E., A comparison of membrane separation and distillation, Trans. Inst.Chem. Eng., Vol.78, 2000, pp 255-262.

[2] Meinema H. A., Dirrix R. W. J., Brinkman H. W., Terpstra R. A., Jekerle J., Kosters P. H., Ceramic membranes for gas separation-recent developments and state of the art, Interceram, Vol.54, 2005, pp 86-94.

]3[ مدائنی سیاوش، غشا و فرآیندهای غشایی، انتشارات طاق بستان، 1381.

[4] De Lange R.S.A., Keizer K., Burggraaf A.J., Analysis and theory of gas transport in microporous sol–gel derived ceramic membranes, J. Membr. Sci., Vol.104, 1995, pp 81-88.

[5] Asaeda B., Yamasaki S., Separation of organic/inorganic gas mixtures by porous silica membranes, Separation. Tech., Vol.25, 2001, pp 151-160.

[6] Nair B.N., Keizer K., Okubo T., Nakao S., Evolution of pore structure in microporous silica membranes: sol–gel procedures and strategies, Adv. Mater., Vol.10, 1998, pp 249-255.

[7] Ahmad A.L., Mustafa N.N., Sol–gel synthesized of nano-composite palladium–alumina ceramic membrane for H2 permeability: Preparation and characterization, Int. J. Hydro. Energy, Vol.32, 2007, pp 2010-2017.

[8] Araki S., Kiyohara Y., Imasaka S., Tanaka S., Miyake Y., Preparation and pervaporation properties of silica–zirconia membranes, Desalination, Vol.266, 2010, pp 46-56.

[9] Tsuru T., Morita T., Shintani H., Yoshioka T., Asaeda M., Membrane reactor performance of steam reforming of methane using hydrogen-permselective catalytic SiO2 membranes, J. Membr. Sci., Vol.316, 2008, pp 53-60.

[10] Van Gestel T., Hauler F., Bram M.,. Meulenberg W. A., Buchkremer H., Synthesis and characterization of hydrogen-selective sol–gel SiO2 membranes supported on ceramic and stainless steel supports, J. Separation and Purification Technology, Vol.121, 2014, pp 20-29.

[11] Pakizeh M., Omidkhah M.R., Zarringhalam A., Synthesis and characterization of new silica membranes using template–sol–gel technology, Int. J. Hydro. Energy, Vol.32, 2007, pp 1825-1836.

[12] Prabhu A. K., Oyama S. T., Highly hydrogen selective ceramic membranes: Application to the transformation of greenhouse gases, J. Membr. Sci., Vol.176, 2000, pp 233-242.

[13] Lee D., Zhang L., Oyama S., Niu S., Saraf, R., Synthesis, characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina, J. Membr. Sci., Vol.231, 2004, pp 117-125.

[14] Han H. H., Ryu S. H., Nakao S., Lee Y. T., Gas permeation properties and preparation of porous ceramic membrane by CVD method using siloxane compounds, J. Membr. Sci., Vol.431, 2013, pp. 72-78.

[15] Khatib S. J., Oyama S. T., Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD), Separation and Purification Technology, Vol.111, 2013, pp. 20-42.

[16] Amanipour M., Ganji Babakhani E., Safekordi A., Zamaniyan A., Heidari M., Effect of CVD parameters on hydrogen permeation properties in a nano-composite SiO2–Al2O3 membrane, J. Membr. Sci., Vol.423-424, 2012, pp 530-535.

[17] Amanipour M., Towfighi J., Zamaniyan A., Ganji Babakhani E., Heidari M., Performance of a nickel–alumina catalytic layer for simultaneous production and purification of hydrogen in a tubular membrane reactor, RSC Adv., 2016, Vol.6, pp 75686-75692.