مقدمه‌ای بر عملکرد کاتالیست‌های مختلف در تبدیل متانول به متیلال

نوع مقاله: علمی ترویجی

نویسندگان

1 دانشجو

2 عضو هیات علمی / سازمان پژوهشهای علمی و صنعتی ایران

3 عضو هیات علمی

چکیده

در این مقاله عملکرد کاتالیست های ناهمگن متفاوتی مانند کاتالیست‌های حاوی وانادیم، مولبیدن، رنیوم و زئولیت‌ها برای تبدیل متانول به متیلال آورده شده است. بررسی‌ها نشان می‌دهد که کاتالیست‌های وانادیم اکسید در مقایسه با سایر کاتالیست‌ها بهترین عملکرد را از خود نشان داده‌اند. کاتالیست V2O5/TiO2 تهیه شده به روش تلقیح و اصلاح شده اسیدی در دمای K 423 گزینش‌پذیری 93% نسبت به متیلال و 49% تبدیل متانول را از خود نشان داده است. این بررسی‌ها نشان داده است که از میان عوامل مختلف ذکر شده تعداد سایت‌های اسیدی در کاتالیست بیشترین نقش را در افزایش گزینش‌پذیری نسبت به تولید متیلال دارد. بررسی‌ها نشان می‌دهد افزایش بیش از اندازه خصلت اسیدی کاتالیست تاثیر منفی بر میزان گزینش‌پذیری نسبت تولید متیلال دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Introduction to performance of various catalysts in conversion of methanol to methylal

نویسنده [English]

  • Mohammad Reza Jamei 1
2 Faculty member / Iranian Research Organization for Science and Technology (IROST)
چکیده [English]

In this paper, the performance of various heterogeneous catalysts, such as catalysts containing vanadium, molybdenum, rhenium and zeolites for converting methanol to methylal has been studied. The studies show that the vanadium oxide catalysts in comparison to other catalysts have shown the better performance. Catalyst V2O5/TiO2 prepared by impregnation method and modified in acid at a temperature of 423 K has shown 93% selectivity and 49% conversion of methanol to methylal. Also, in this study, change factors such as the number of acidic sites, reaction temperature and pressure, different methods for catalyst preparation, calcination temperature on catalyst performance were evaluated. These studies have shown that among the various listed factors, number of acidic sites has most important role in catalyst selectivity towards the production of methylal. Studies show increasing excessive acidic site has negative effect on catalyst selectivity toward the production methylal.

کلیدواژه‌ها [English]

  • Methylal
  • Methanol
  • Vanadium Oxide
  • Acidic Site
  1. R. Zhu., X. Wang., H. Miao., X. Yang, Z. Huang) .2011) Effect of dimethoxy-methane and      exhaust gas recirculation on combustion and emission characteristics of a direct injection diesel engine. Fuel.,  90, 1731–1737.
  2. H. Guo., D. Li., H. Xiao., J. Zhang., W. Li., Y. Sun. (2009) Methanol selective oxidation to dimethoxymethane on H3PMo12O40/SBA-15 supported catalysts . Korean J. Chem. Eng.,26, 902-906.
  3.   Y. Zhang., I. J. Drake., D. N. Briggs., A. T. Bell. (2006) Synthesis of dimethyl carbonate and dimethoxy methane over Cu-ZSM-5. J Catal., 244, 219–229.
  4. H. Kim., D. R. Park., S. Park., J. Jung., S. B. Lee., I. K. Song. (2009) Preparation,characterization, and catalytic activity of H5PMo10V2O40 immobilized on nitrogencontaining mesoporous carbon (PMo10V2/N-MC) for selective conversion of methanol to dimethoxymethane. Korean J. Chem. Eng., 26, 660-665.
  5. Y. Yuan., H. Liu., H. Imoto., T. Shido., Y. Iwasawa. (2000) Performance and Characterization of a New Crystalline SbRe2O6 Catalyst for Selective Oxidation of Methanol to Methylal. J Catal.,195, 51–61.
  6. H. Guo., C. Chen., Y. Xiao., J. Wang., Zh. Fan., D. Li., Y. Sun. (2013) Influence of preparation method on the surface and catalytic properties of sulfated vanadia–titania catalysts for partial oxidation of methanol. Fuel Processing Technology., 106,77–83.
  7. X. Lu., Z. Qin., M. Dong., H. Zhu., G. Wang., Y. Zhao., W. Fan., J. Wang. (2011) Selective oxidation of methanol to dimethoxymethane over acid-modifiedV2O5/TiO2 catalysts. Fuel., 90,1335–1339.
  8. H. Zhao., S. Bennici., J. Shen., A. Auroux. (2010) Nature of surface sites of V2O5-TiO2/SO4 catalysts and reactivity in selective oxidation of methanol to dimethoxymethane. J Catal., 272,176–189.
  9. H. Guo., D. Li., D. Jiang., W. Li., Y. Sun. (2010) The One-Step Oxidation of Methanol to Dimethoxymethane over Nanostructure Vanadium-Based Catalysts. Catal Lett., 135, 48–56 .
  10. J. Liu., Q. Sun., Y. Fu., H. Zhao., A. Auroux., J. Shen. (2008) Preparation of Mesoporous V–Ce–Ti–O for the Selective Oxidation of Methanol to Dimethoxymethane. Catal Lett., 126,155–163.
  11. D. Zeng., Sh. Liu., G. Wang., H. Chen., J. Xu., F. Deng. (2013) Effect of Surface AcidProperties of Modified VOx/Al2O3 Catalysts on Methanol Selective Oxidation .Catal Lett. 143,624-629.
  12. K.-a. Thavornpraserta., M. Caprona., L.  Jalowiecki-Duhamela., O. Gardolla., M. Trentesauxa.,  A.-S. Mamedea., G. Fanga., J.  Fayea.,  N. Touatia.,  H. Vezina., J.-L. Duboisd., J.-L. Couturierf., F. Dumeignil. (2014) Highly productive iron molybdate mixed oxides and their relevant catalytic properties for direct synthesis of 1,1-dimethoxymethane from methanol. Applied Catalysis B: Environmental. 145, 126– 135.
  13. X. Secordel, E. Berrier, M. Capron, S. Cristol, J. F. Paul, M. Fournier, E.Payen. (2010) TiO2-supported rhenium oxide catalysts for methanol oxidation: Effect of support texture on the structure and reactivity evidenced by an operando Raman study. Catalysis Today 155 , 177–183.
  14. Y. Yuan., Y. Iwasawa. (2002) Performance and characterization of supported Rhenium oxide catalysts for selective oxidation of methanol to methylal. J Phys Chem., 106, 4441-4449.
  15. O. A. Nikonova., M. Capron., G. Fang., J. Faye., A.S. Mamede., L. Jalowiecki-Duhamel., F. Dumeignil., G. A. Seisenbaeva. (2011) Novel approach to rhenium oxide catalysts for selective oxidation of methanol to DMM. J. of Catal., 279. 310–318.
  16. N. V. Pavlenko., Y. N. Kochkin., N. V. Vlasenko., K. N. Khomenko., V. V. Brei. (2000).Effect of crystallinity in HZSM-5 amorphous alumosilica systems on their catalytic properties in the synthesis of dimemtoxymethane. Theo Exp chem., 36, 124-128.
  17. Y. Zhang., D. N. Briggs., E. de Smit., A. T. Bell. (2007)  Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanolon Cu-exchanged Y, ZSM-5, and Mordenite. J of Catal., 251, 443–452.