مدلسازی و پیش‌بینی ضریب انتقال حرارت نانو‌سیالات رقیق ɣ-AL2O3/H2O به کمک سیستم عصبی-فازی

نوع مقاله: علمی ترویجی

نویسندگان

1 دانشگاه مهندسی فناوری های نوین قوچان

2 دانشگاه بجنورد

چکیده

در این پژوهش با استفاده از شبکه عصبی و عصبی-فازی ضریب انتقال حرارت در نانوسیالات جاری در یک لوله مدور در رژیم جریان آشفته مدلسازی و پیش‌بینی شده است. داده‌های ورودی به مدل، عدد رینولدز و کسر حجمی نرمال شده نانو‌ذرات و خروجی آن ضریب انتقال حرارت نرمال شده است. در شبکه عصبی استفاده شده مقادیر متوسط خطای نسبی و متوسط مربع خطا نسبت به نتایج آزمایشگاهی به‌ترتیب برابر 002/0 و 0005/0 می‌باشد، در شبکه عصبی-فازی برای داده‌های آموزش این مقادیر خطا به‌ترتیب 0 و 0، و برای داده‌های تست 0027/0- و 00067/0 به‌دست آمده است. مقدار ضریب تبیین در شبکه عصبی 99/0 است که نشان دهنده پیش‌بینی مناسب این روش می‌باشد. این مقدار در روش عصبی-فازی برای داده‌های آموزش 1 و برای داده‌های تست 988/0 می‌باشد. براساس این مقادیر می‌توان نتیجه گرفت استفاده از شبکه عصبی-فازی جهت پیش بینی ضریب انتقال حرارت در نانوسیالات مناسب‌تر است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and prediction of dilute ɣ-AL2O3/H2O nanofluids heat transfer coefficient using neuro-fuzzy system

نویسندگان [English]

  • Roghaye Nazari 1
  • Morteza Esfandyari 2
1 Quchan University of Advanced Technology
2 Bojnord University
چکیده [English]

In this research, nanofluids heat transfer in a circular tube at turbulent regime were simulated and predicted by neural and neuro-fuzzy networks. Normalized Re numbers and volume fractions were inputs data and normalized heat transfer coefficient was output data. The average relative error and mean square error have been calculated. These values in the neural network are 0.002 and 0.0005, respectively. And for training data of neuro-fuzzy method were 0 and 0, for test data were -0.0027 and 0.00067, respectively. Regression value in neural network was 0.99. This value in neuro-fuzzy method for training data was 1 and testing data was 0.988. According to regression values, neuro-fuzzy method is better than neural network method.

کلیدواژه‌ها [English]

  • Nanofluids
  • Neuro-Fuzzy System
  • Heat transfer coefficient
[1] Yu, W., H. Xie., A review on nanofluids: preparation, stability mechanisms and applications, Journal of Nanomaterials, 2012, pp 1.
[2] Mukherjee, S., Preparation and Stability of Nanofluids-A Review. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 2013.
[3] Chol, S., Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed. Vol. 231, 1995,  pp. 99-106..
[4] Xuan, Y. and Q. Li, Heat transfer enhancement of nanofluids. International Journal Flow of Heat and Fluid, vol. 21(1), 2000, pp. 58-64
[5] Fotukian, S. and M.N. Esfahany, Experimental investigation of turbulent convective heat transfer of dilute γ-Al 2O 3/water nanofluid inside a circular tube. International Journal of Heat and Fluid Flow, vol.31(4), 2010, pp.612-660.
[6] Hojjat, M., et al., Convective heat transfer of non-Newtonian nanofluids through a uniformly heatedcircular tube. International Journal of Thermal Sciences, vol. 50(4): 2011, pp. 525-531.
[7] Nasiri, M., S.G. Etemad, and R. Bagheri, Experimental heattransfer of nanofluid through an annular duct. International Communications in Heat and Mass Transfer, vol. 38(7): 2011, pp. 958-963.
[8] Sheikholeslami, M. and D. Ganji, Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technology,vol.235, 2013, pp. 873-879.
[9] شاه محمدی، پ.، بیکی، ح.، "بررسی افزایش انتقال حرارت سمت پوسته در مبدل حرارتی پوسته و لوله حاوی نانوسیال آب/آلومینا با استفاده از دینامیک سیالات محاسباتی"، فرآیند نو، شماره 51، 1394، 56-68.
[10] شیخ زاده، ق. ع.، غفاری، پ.، "مدل‌سازی عددی اثر نانوذرات در جریان جابجایی ترکیبی نانوسیال با خواص متغیر در محفظه مربعی با درگاه ورود و خروج جریان"، مدل‌سازی در مهندسی، شماره 38، 1393، 83-102.
[11] Peyghambarzadeh, S., et al., Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator. Applied Thermal Engineering,. Vol.52(1), 2013 pp. 8-16.
[12] Hussein, A.M., et al., Heat transfer augmentation of a car radiator using nanofluids. Heat and Mass Transfer,. Vol.50(11), 2014, pp. 1553-1561.
[13] Jang, J.-S.R., ANFIS: adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics, IEEE Transactions on, vol.23(3), 1993, pp. 665-685.
[14] Salehi, H., et al., Nero-fuzzy modeling of the convection heat transfer coefficient for the nanofluid. Heat and Mass Transfer, vol.49(4): 2013, pp. 575-583.
[15] Balcilar, M., et al., Investigation of pool boiling of nanofluids using artificial neural networks and correlation development techniques. International Communications in Heat and Mass Transfer, Vol.39(3), 2012, pp. 424-431.
[16] Aminossadati, S., Kargar, A., Ghasemi, B., Adaptive network-based fuzzy inference system analysis of mixed convection in a two-sided lid-driven cavity filled with a nanofluid. International Journal of Thermal Sciences, vol.52, 2012,  pp. 102-111.
[17] Shanbedi, M., et al., Modeling of heat transfer characterization of a two-phase closed thermosyphon using MWCNT/WATER and MWCNT-AG/WATER nanofluids., 15th Conference of Fluid Dynamics,1392, Kermanshah, Iran.
[18] Tajik Jamal-Abadi, M., Zamzamian, A., Optimization of thermal conductivity of Al2O3 nanofluid by using ANN and GRG methods. International Journal of Nanoscience and Nanotechnology, Vol.9(4): 2013, pp. 177-184.
[19] Ariana, M., Vaferi, B., Karimi, G., Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks. Powder Technology, vol.278 2015, pp. 1-10.
[20] Balla, H.H., et al., Enhancement of heat transfer coefficient multi-metallic nanofluid with ANFIS modeling for thermophysical properties. Thermal Science, vol.19(5), 2015, pp. 1613-1620.
[21] Vakili, M., Yahyaei, M., Kalhor, K., Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results. International Communications in Heat and Mass Transfer, vol.74, 2016, pp 11-17.
[22] Ahmadloo, E., Azizi, S., Prediction of thermal conductivity of various nanofluids using artificial neural network. International Communications in Heat and Mass Transfer, vol.74, 2016, pp. 69-75.
[23] Baruch, I.S., et al., A fuzzy-neural multi-model for nonlinear systems identification and control. Fuzzy sets and systems, vol.159(20), 2008, pp. 2650-2667.
[24] Abedini, R., et al., The prediction of undersaturated crude oil viscosity: An artificial neural network and fuzzy model approach. Petroleum Science and Technology, vol.30(19), 2012, pp. 2008-2021.
[25] Varol, Y., et al., Prediction of flow fields and temperature distributions due to natural convection in a triangular enclosure using Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). International Communications in Heat and Mass Transfer, vol.34(7): 2007, pp. 887-896.
[26] Sivakumar, R. Balu, K., ANFIS based distillation column control. International Jurnal of Computer Applications Special issue on Evolutionary Computation, 2010, p. 67-73.