مرور جامع بر پوشش مقاوم به خوردگی و فرسایش سمت آتش در بویلرهای نیروگاه

نوع مقاله : مروری

نویسندگان

1 استادیار، عضو هیات علمی، گروه پژوهشی مواد غیرفلزی، پژوهشگاه نیرو، تهران

2 دانشجوی دکتری تخصصی، دانشکده شیمی/دانشگاه کاشان، کاشان

3 پژوهشگر، گروه پژوهشی متالورژی، پژوهشگاه نیرو، تهران

چکیده

فولادهای معمولی و آلیاژهای آنها قادر به مقاومت در برابر خوردگی دمای بالا در بویلرهای نیروگاه حرارتی نیستند. برای اجزای سمت آتش بویلر، مسائل مورد توجه شامل فرسایش و خوردگی در محیط‌های عملیاتی است. تکنیک‏های مختلف پوشش اسپری حرارتی برای پاشش انواع مختلف پوشش‏ها بر روی فولادهای بویلر توسعه یافته است. پیشرفت‌ها در تکنیک‌های پاشش حرارتی منجر به توسعه پوشش‌هایی با خواص مقاومت در برابر خوردگی شده است. در این مقاله ابتدا مقدمه و ضرورت به کارگیری پوشش به کار رفته برای تجهیزات بویلر بیان شده، در ادامه مطالعات صورت گرفته تا به امروز درباره عملکرد، پیشرفت‌ها و کاربردهای پوشش‌های اسپری حرارتی برای مقاومت در برابر خوردگی دمای بالا بررسی شد و در نهایت یه مطالعه موردی از به کارگیری این پوشش در یک نیروگاه بیان شد. در میان انواع پوشش‏ها، آلیاژ Ni-20Cr و کامپوزیت‏ آن‏ها با ترکیبات کاربیدی بهینه‏ترین پوشش با عملکرد متاسب در انواع بویلرها است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Comprehensive Review of the Corrosion and Erosion Resistant Coating on the Fireside in Power Plant Boilers

نویسندگان [English]

  • Majid Mirzaee 1
  • Tayyebeh Mohebbi 2
  • Davar Rezakhani 3
1 1Assistant professor, Non-metallic Materials Research Group, Niroo Research Institute, Tehran
2 Ph.D Student, Chemistry Department, Kashan university, Kashan
3 Researcher, Metallurgu Group, Niroo Research Institute, Tehran
چکیده [English]

Conventional steels and their alloys are not able to withstand high temperature corrosion in thermal power plant boilers. For boiler fireside components, issues of concern include erosion and corrosion in operating environments. Different thermal spray coating techniques have been developed to spray different types of coatings on boiler steels. Advances in thermal spraying techniques have led to the development of coatings with corrosion resistance properties. In this article, firstly, the introduction and the necessity of applying the coating used for boiler equipment is stated, then the studies carried out until today about the performance, developments and applications of thermal spray coatings for resistance to high temperature corrosion were examined, and finally a case study of using this coating in a power plant was mentioned. Among the types of coatings, Ni-20Cr alloy and their composite with carbide compounds is the most optimal coating with good performance in all types of boilers.

کلیدواژه‌ها [English]

  • Corrosion
  • Erosion
  • Boiler
  • Coating
[1] Rapp, R.A. , Y.-S. Zhang, "Hot corrosion of materials: fundamental studies", Jom, Vol.46, pp. 47-55, 1994.
[2] Srikanth, S., et al., "Analysis of failures in boiler tubes due to fireside corrosion in a waste heat recovery boiler", Engineering failure analysis, Vol. 1, No.1,  pp. 59-66., 2003.
[3]       Eliaz, N., G. Shemesh, R. Latanision, "Hot corrosion in gas turbine components", Engineering failure analysis, Vol.9, No.1, pp. 31-43, 2002.
[4]       Wen, Z., et al., "Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors", Science advances,Vol. 2, No.10, pp. e1600097, 2016.
[5]       Yu, H., et al., "Effect of Si addition to improve the performance of type II and type I hot corrosion resistance of aluminide coating", Corrosion Science,Vol. 212, pp. 110937, 2023.
[6]       Ozkan, D., "Structural characteristics and wear, oxidation, hot corrosion behaviors of HVOF sprayed Cr3C2-NiCr hardmetal coatings", Surface and Coatings Technology, Vol. 457, pp. 129319, 2023.
[7]       Chikhalikar, A.S., E.P. Godbole, D.L. Poerschke, "Approach for statistical analysis of oxide-and sulfate-induced hot corrosion of advanced alloys", Corrosion Science, Vol. 211, pp. 11089, 2023.
[8]       A.S. Khanna, High temperature oxidation in Handbook of environmental degradation of materials, Elsevier, pp. 105-15, 2005.
[9]       Simms, N., P. Kilgallon, J. Oakey, Degradation of heat exchanger materials under biomass co-firing conditions. Materials at High Temperatures, 24(4): pp. 333-34, 2007.
[10] Sidhu, H.S., B.S. Sidhu, S. Prakash, "Mechanical and microstructural properties of HVOF sprayed WC–Co and Cr3C2–NiCr coatings on the boiler tube steels using LPG as the fuel gas", Journal of Materials Processing Technology, Vol. 171, No. 1, pp. 77-82, 2006.
[11] Oakey, J.E., Power plant life management and performance improvement., Elsevier, 2011.
[12] J.,Stringer, I.G. Wright, Current limitations of high-temperature alloys in practical applications. Oxidation of Metals, 44: pp. 265-30, 1995.
[13] Khartchenko, N.V. , V.M. Kharchenko, Advanced energy systems, CRC Pres, 2013.
[14] Robinson, A., et al., Fireside issues associated with coal-biomass cofiring. National Renewable Energy Laboratory (NREL), Sandia National Laboratories, Federal Energy Technology Center. NREL/TP-570-25767, 1998.
[15] K., Natesan, A. Purohit, D. Rink, Coal-ash corrosion of alloys for combustion power plants, Argonne National Lab., Argonne, IL (US), 2003.
[16] Shingledecker, J.P. , I.G. Wright, Evaluation of the Materials Technology Required for a 760̊ C Power Steam Boiler. 2006, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).
[17] Kumar, S., R. Bhatia, H. Singh, "Hot corrosion behaviour of CNT reinforced zirconium yttrium coatings in molten salt environment", Journal of Bio-and Tribo-Corrosion, Vol. 6, pp. 1-9, 2020.
[18] Goyal, K., R. Goyal, "Improving hot corrosion resistance of Cr3C2–20NiCr coatings with CNT reinforcements", Surface engineering, Vol. 36, No.11, pp. 1200-1209, 2020.
[19] Viswanathan, V., R. Purgert, P. Rawls, "Coal-fired power materials: major advances in materials technology over the last decade have enabled building coal-fired power plants with much higher efficiencies than the current generation", Advanced Materials & Processes,Vol. 166, No.8, pp. 47-50, 2008.
[20] Matthews, S., B. James, M. Hyland, "High temperature erosion of Cr3C2-NiCr thermal spray coatings—The role of phase microstructure", Surface and Coatings Technology,Vol. 203, No.9, pp. 1144-1153, 2009.
[21] Burakowski, T., Wierzchoń T. Inżynieria powierzchni metali. WNT, Warszawa, 1995.
[22] Wang, B.Q., K. Luer, "The erosion-oxidation behavior of HVOF Cr3C2-NiCr cermet coating", Wear, Vol. 174, No. 1-2, pp. 177-185, 1994.
[23] Hearley, J., J. Little, A. Sturgeon, "The erosion behaviour of NiAl intermetallic coatings produced by high velocity oxy-fuel thermal spraying", Wear,Vol. 2, No.33, pp. 328-33, 1999.
[24] Szymański, K., et al., "Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers-A review", Surface and Coatings Technology,Vol. 268, pp. 153-164, 2015.
[25] Shi, H., et al., "Ash deposition of Zhundong coal in a 350 MW pulverized coal furnace: Influence of sulfation", Fuel,Vol. 260, pp. 116317, 2020.
[26] Mudgal, D., S. Singh, S. Prakash, "Corrosion problems in incinerators and biomass-fuel-fired boilers", International Journal of Corrosion, 2014.
[27] Kumar, S., et al., "Performance of thermal-sprayed coatings to combat hot corrosion of coal-fired boiler tube and effect of process parameters and post-coating heat treatment on coating performance: a review", Surface Engineering,Vol. 37, No.7, pp. 833-860, 2021.
[28] Singh, G., N. Bala, V. Chawla, "Oxidation behaviour of HVOF sprayed NiCrAlY and NiCrAlY-20SiC coatings on T-91 boiler tube steel", Protection of Metals and Physical Chemistry of Surfaces,Vol. 56, pp. 134-150, 2020.
[29] Singh, G., N. Bala, V. Chawla, "Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni-22Cr-10Al-1Y and Ni-22Cr-10Al-1Y-SiC (N) coatings on ASTM-SA213-T22 steel", International Journal of Minerals, Metallurgy and Materials,Vol. 27, pp. 401-416, 2020.
[30] Wang, T.-G., et al., "Design of a separation device used in detonation gun spraying system and its effects on the performance of WC–Co coatings", Surface and Coatings Technology, Vol. 203, No.12, pp. 1637-1644, 2009.
[31] Goyal, K., H. Singh, R. Bhatia, "Behaviour of carbon nanotubes-Cr2O3 thermal barrier coatings in actual boiler". Surface Engineering,Vol. 36, No.2, pp. 124-134, 2020.
[32] Singh, V., K. Goyal, R. Goyal, "Improving the hot corrosion resistance of boiler tube steels by detonation gun sprayed coatings in actual boiler of thermal power plant", Anti-Corrosion Methods and Materials, Vol. 66, No.4, pp. 394-402, 2019.
[33] Singh, A., K. Goyal, R. Goyal, "An investigation on hot corrosion behaviour of cermet coatings in simulated boiler environment", Journal of Bio-and Tribo-Corrosion,Vol. 5, pp. 1-7, 2019.
[34] Yamada, K., et al., "Hot corrosion behavior of boiler tube materials in refuse incineration environment. Vacuum",Vol. 65, No. 3-4, pp. 533-540, 2002.
[35] Ak, N., et al., "NiCr coatings on stainless steel by HVOF technique", Surface and coatings technology,Vol. 174, pp. 1070-1073, 2003.
[36] Singh, H., D. Puri, S. Prakash, "Some studies on hot corrosion performance of plasma sprayed coatings on a Fe-based superalloy", surface and coatings technology,Vol. 192, No.1, pp. 27-38, 2005.
[37] Sidhu, B.S., D. Puri, S. Prakash, "Mechanical and metallurgical properties of plasma sprayed and laser remelted Ni–20Cr and Stellite-6 coatings", Journal of Materials Processing Technology,Vol. 159, No.3,  pp. 347-355, 2005.
[38] Sidhu, T., S. Prakash, "R. Agrawal, Performance of high-velocity oxyfuel-sprayed coatings on an Fe-based superalloy in Na2SO4-60% V2O5 environment at 900 C part II: Hot corrosion behavior of the coatings", Journal of materials engineering and performance,Vol. 15, pp. 130-138, 2006.
[39] Suresh Babu, P., et al., "Effect of feedstock size and its distribution on the properties of detonation sprayed coatings", Journal of thermal spray technology,Vol. 16, pp. 281-290, 2007.
[40] Huang, C., Y. Zhang, R. Vilar, "Microstructure and anti-oxidation behavior of laser clad Ni–20Cr coating on molybdenum surface", Surface and Coatings Technology,Vol. 205, No.3,  pp. 835-840, 2010.
[41] Kaushal, G., H. Singh, S. Prakash, "High-temperature erosion-corrosion performance of high-velocity oxy-fuel sprayed Ni-20 Cr coating in actual boiler environment", Metallurgical and Materials Transactions A,Vol. 42, pp. 1836-1846, 2011.
[42] Kamal, S., R. Jayaganthan, S. Prakash, "Mechanical and microstructural characteristics of detonation gun sprayed NiCrAlY+ 0.4 wt% CeO2 coatings on superalloys", Materials chemistry and physics, Vol.122, No.1, pp. 262-268, 2010.
 [43]    Kaushal, G., H. Singh, S. Prakash, "Comparative high temperature analysis of HVOF-sprayed and detonation gun sprayed Ni–20Cr coating in laboratory and actual boiler environments", Oxidation of metals, 2011, Vol. 76, pp 169-191.
[44] Bala, N., H. Singh, S. Prakash, "Characterization and high-temperature oxidation behavior of cold-sprayed Ni-20Cr and Ni-50Cr coatings on boiler steels", Metallurgical and Materials Transactions A,Vol. 42,  pp. 3399-3416, 2011.
[45] Simms, N., et al." Assessment of Coating Performance on Waterwalls and Superheaters in a Pulverised Fuel-Fired Power Station", Oxidation of Metals, Vol. 88, No.1, pp. 165-177, 2017.