مقایسه روابط آستانه‌ای تشکیل رسوب هیدروکربنی در مبدل‌های پیشگرمکن برج‌های تقطیر

نوع مقاله : پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه شیراز، شیراز

2 محقق پسادکتری، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه شیراز، شیراز

3 عضو هیئت علمی مهندسی شیمی، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه شیراز، شیراز

چکیده

تشکیل رسوبات هیدروکربنی در مبدل‌های پیشگرمکن با انواع چالش‌های عملیاتی، زیست محیطی، ایمنی و اقتصادی همراه خواهد بود. پژوهش حاضر به مطالعه و مقایسه پارامتری معادلات آستانه‌ای تشکیل رسوبات می‌پردازد. برای این منظور، گستره وسیعی از داده‌های تشکیل رسوب هیدروکربنی شامل خصوصیات جریان و سیال نفتی، شرایط دمایی و مشخصات مبدل‌ها ناظر به قطر معادل از منابع مختلف جمع‌آوری گردید. براساس خطوط برازش شده روی داده‌های نرخ رسوب محاسباتی بر حسب مقادیر تجربی مشابه، معادلات پالی، ابرت و پانچال به ترتیب با شیب‌های 0/352، 0/108، و 0/022 بیشترین دقت را در پیش‌بینی نرخ رسوب دارند. همچنین براساس آنالیز حساسیت، موثرترین پارامترها بر پیش‌بینی نرخ تشکیل رسوب عدد رینولدز و دمای سطح مبدل هستند. در نهایت می‌توان گفت که بهترین معادله برای پیش‌بینی نرخ رسوبگذاری بر مبنای نزدیکی مقادیر محاسباتی و تجربی در مبدل‌های پیشگرمکن برج‌های تقطیر، معادله‌ی پالی با کمترین حساسیت نسبی متوسط برابر با 0/29 خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of Threshold Models of Hydrocarbon Fouling Formation in Preheaters of Distillation Columns

نویسندگان [English]

  • Mohammad Javad Barbastegan 1
  • Amir Hossein Nikoo 2
  • M. Reza Malayeri 3
1 Graduate, School of Chemical, Petroleum, and Gas Engineering, Shiraz University, Shiraz
2 Post-doctoral fellow, School of Chemical, Petroleum, and Gas Engineering, Shiraz University, Shiraz
3 Faculty member, School of Chemical, Petroleum, and Gas Engineering, Shiraz University, Shiraz
چکیده [English]

Hydrocarbon fouling of preheat exchangers causes several detrimental impacts on operation, environment, safety, as well as economy of oil refineries. To investigate threshold fouling models, a variety of hydrocarbon fouling data, such as temperature, oil flow, fluid properties, and geometries of such exchangers, has been gathered from the literature. The most accurate models for predicting the fouling rate are the Polley, Ebert, and Panchal models, with slopes of 0.352, 0.108, and 0.022, respectively, based on fitted curves on the computational fouling rates in terms of comparable experimental values. The sensitivity analysis indicates that the two factors that profoundly affect the fouling rate are the surface temperature and Reynolds number. Using the Polley's equation, the fouling rate in preheat exchangers may be predicted with the highest degree of accuracy, mean sensitivity analysis of 0.29, based on the consistency of calculated and experimental data.

کلیدواژه‌ها [English]

  • Crude Oil
  • Heat Exchanger
  • Hydrocarbon Fouling
  • Sensitivity Analysis
  • Threshold Equations
[1] A. A. Olajire, "A review of oilfield scale management technology for oil and gas production", J. Pet. Sci. Eng., vol. 135, no. 135, pp. 723–737, Nov. 2015, doi: 10.1016/j.petrol.2015.09.011.
[2]       S. Alimohammadi, S. Zendehboudi, and L. James, "A comprehensive review of asphaltene deposition in petroleum reservoirs: Theory, challenges, and tips", Fuel, vol. 252, pp. 753–791, Sep. 2019.
[3] H. Müller-Steinhagen, M. R. Malayeri, A. P. Watkinson, "Heat exchanger fouling: environmental impacts", Heat Transf. Eng., vol. 30, no. 10–11, pp. 773–776, Sep. 2010.
[4] S. Fakher, M. Ahdaya, M. Elturki, A. Imqam, "Critical review of asphaltene properties and factors impacting its stability in crude oil", J. Pet. Explor. Prod. Technol., vol. 10, no. 3, pp. 1183–1200, Mar. 2020.
[5]       U. Farooq, S. Lædre, and K. Gawel, "Review of asphaltenes in an electric field", Energy and Fuels, vol. 35, no. 9, pp. 7285–7304, 2021.
[6]       L. Mahmoodi, A. H. Nikoo, M. R. Malayeri, M. Riazi, "Characterization of asphaltene removal mechanisms from well columns using surface energy", Geoenergy Sci. Eng., vol. 225, p. 211679, Jun. 2023.
[7] H. Müller-Steinhagen, M. R. Malayeri, A. P. Watkinson, "Fouling of heat exchangers-new approaches to solve an old problem", Heat Transf. Eng., vol. 26, no. 1, pp. 1–4, Jan. 2006.
[8]       M. Nategh, M. R. Malayeri, H. Mahdiyar, "A review on crude oil fouling and mitigation methods in pre-heat trains of Iranian oil refineries", J. Oil, Gas Petrochemical Technol., vol. 4, no. Number 1, pp. 1–17, Dec. 2017.
[9]       A. Al-Hosani, S. Ravichandran, N. Daraboina, "Review of asphaltene deposition modeling in oil and gas production", Energy and Fuels, vol. 35, no. 2, pp. 965–986, Jan. 2021.
[10] E. M. Ishiyama, S. J. Pugh, H. U. Zettler, Economic and environmental implications of fouling in crude preheat trains, 2022.
[11] F. Cibotti, E. Rogel, E. Forbes, L. Jackowski, Comparison of heat exchanger fouling test results for once-through and recirculating modes of operation at constant flowrate, 2022.
[12] A. D. Smith, E. Hitimana, Incorporation of fouling deposit measurements in crude oil fouling testing and data analysis, 2022.
[13] R. A. Shank, T. R. Mccartney, Characterization of crude oil fouling: Defining the coke spectrum, 2019.
[14] E. M. Ishiyama, S. J. Pugh, W. R. Paterson, G. T. Polley, D. I. Wilson, "Management of crude preheat trains subject to", Proceeding of international conference on heat exchanger fouling and cleaning, 2011.
[15] H. M. Joshi, Crude heat exchanger fouling-field observations, 2022.
[16] D. Kern, R. Seaton, "A theoretical analysis of thermal surface fouling", Br. Chem. Eng., vol. 4, no. 5, pp. 258–262, Apr. 1959.
[17] B. Crittenden, S. Kolaczkowski, S. Hout, "Modelling hydrocarbon fouling", Chem. Eng. Res. Des., vol. 65, pp. 171–179, 1987.
[18] W. Ebert, C. B. Panchal, "Analysis of Exxon crude-oil-slip stream coking data", Fouling mitigation of industrial heat exchange Equipment, 1997, pp. 451–460.
[19] C. B. Panchal, W. C. Kuru, C. F. Liao, W. A. Ebert, J. W. Palen, "Threshold conditions for crude oil fouling", Understanding Heat Exchanger Fouling and its Mitigation, 1999, pp. 273–279.
[20] G. T. Polley, D. I. Wilson, B. L. Yeap, S. J. Pugh, "Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains", Appl. Therm. Eng., vol. 22, no. 7, pp. 777–788, May 2002.
[21] Z. Saleh, R. Sheikholeslami, A. P. Watkinson, "Fouling characteristics of a light Australian crude oil", Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, 2003, pp. 226–233.
[22] M. R. Jafari Nasr, M. Majidi Givi, "Modeling of crude oil fouling in preheat exchangers of refinery distillation units", Appl. Therm. Eng., vol. 26, no. 14–15, pp. 1572–1577, Oct. 2006.
[23] B. L. Yeap, D. I. Wilson, G. T. Polley, S. J. Pugh, "Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models", Chem. Eng. Res. Des., vol. 82, no. 1, pp. 53–71, Jan. 2004.
[24] Y. Ma, Experimental study on the fouling of heat exchanger in the crude distillation unit, China University of Petroleum (East China), 2009.
[25] Y. Wang, Experiment study on the characteristic of crude oil fouling, China University of Petroleum (East China), 2010.
[26] G. T. Polley, E. Tamakloe, P.-N. M., Models for chemical reaction fouling, 2011.
[27] M. Yang, B. Crittenden, "Fouling thresholds in bare tubes and tubes fitted with inserts",  Appl. Energy, vol. 89, no. 1, pp. 67–73, Jan. 2012.
[28] Y. Wang, Z. Yuan, Y. Liang, Y. Xie, X. Chen, X. Li, "A review of experimental measurement and prediction models of crude oil fouling rate in crude refinery preheat trains", Asia-Pacific J. Chem. Eng., vol. 10, no. 4, pp. 607–625, Jul. 2015.
[29] S. Saleh, Fouling of organics in Australian crude oil refining, University of New South Wales, 2005.
[30] J. Aminian, S. Shahhosseini, "Neuro-based formulation to predict fouling threshold in crude preheaters", Int. Commun. Heat Mass Transf., vol. 36, no. 5, pp. 525–531, May 2009.
[31] R. H. McCuen, Modeling hydrologic change :statistical methods, 1st ed. CRC Press, 2003.