جداسازی ترکیب نیتروژن‌دار کینولین از گازوئیل با استفاده از چارچوب‌های آلی – فلزی

نوع مقاله : ترویجی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر، تهران ، ایران

2 دانشگاه صنعتی امیرکبیر

3 شرکت پژوهش و فن‌آوری، شرکت ملی پتروشیمی ایران

4 شرکت ملی پالایش و پخش

چکیده

با توجه به اثرات زیست‌محیطی نشر ترکیبات NOx و اثرات منفی ترکیبات نیتروژن‌دار (NCCs) بر فرآیند گوگردزدایی هیدروژنی (HDS)، فرآیند نیتروژن‌زدایی با جذب سطحی (ADN) قبل از HDS اهمیت بسیار زیادی پیدا کرده است. چارچوب‌های آلی-فلزی (MOFs) دسته جدید از جاذب‌ها هستند که کارایی آن‌ها در فرآیند ADN توسط پژوهشگران مطالعه شده است. هدف این مقاله، مقایسه نتایج جذب تک‌جزیی کینولین و جذب رقابتی کینولین/دی‌بنزوتیوفن بر روی جاذب‌های OPA-1 وOPA-2 (ترکیبات با پایه MIL-100 و MIL-101) است. آزمون‌های XRD، FTIR و BET برای مشخصه‌یابی نمونه‌های تولیدی استفاده شدند. براساس مطالعات سینتیکی و تعادلی مشخص شد که سینتیک شبه مرتبه اول و ایزوترم لانگمیر دقت مناسبی در تخمین داده‌های تجربی دارند. از میان جاذب‌ها OPA-2 با بیشینه ظرفیت جذب mgN/g ads 49/91 و گزینش‌پذیری 56/24 بهترین عملکرد را دارد. در آزمایش‌های جذب ترکیبات نیتروژن‌دار از نمونه صنعتی مشخص شد که ظرفیت و گزینش‌پذیری جذب OPA-2 به ترتیب mgN/gads 65/14 و 96/17 است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Separation of quinolone as nitrogen containing compound from diesel using metal organic frameworks

نویسندگان [English]

  • Mohamad Songolzadeh 1
  • mansooreh Soleimani 2
  • Maryam Takht Ravanchi 3
  • mahdi Dejhosseini 4
1 Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
2 Department of Chemical Engineering, Amirkabir University of Technology (Tehran polytechnic)
3 Petrochemical Research and Technology Company, National Petrochemical Company
4 National Iranian Oil Refining and Distribution Company
چکیده [English]

Regarding environmental effects of NOx emission and negative effects of nitrogen containing compounds (NCCs) on the performance of hydrogen desulfurization (HDS) process, adsorptive denitrogenization (ADN) before HDS process is very important. Metal organic frameworks (MOFs) are a new adsorbent group, which is highly studied for AND process. The goal of this paper is to compare quinolone (QUI) adsorption capacity and QUI/ dibenzothiophene (DBT) selectivity on the OPA-1 and OPA-2 adsorbents (based on the MIL-100 and MIL-101, respectively). These adsorbents were characterized by XRD, FTIR and specific surface area (BET). Isotherm and kinetic studies indicated that the Langmuir isotherm and pseudo-first-order model can successfully describe the experimental data. Among the studied adsorbents, OPA-2 with maximum adsorption capacity equal 91.49 mgN/gads and QUI/DBT selectivity equal 24.56 had the best performance for QUI selective adsorption. The adsorption capacity and selectivity for removal NCCs from industrial sample were 14.65 mgN/gads and 17.69, respectively.

کلیدواژه‌ها [English]

  • nitrogen containing compounds
  • adsorptive denitrogenization
  • Metal Organic Frameworks (MOFs)
  • Quinolone
  • Dibenzothiophene
[1] I. Ahmed, Z. Hasan, N.A. Khan, S.H. Jhung, Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): Effect of acidity and basicity of MOFs, Applied Catalysis B: Environmental, 129 (2013) 123-129.
[2] D. Kim, H. Ahn, W. Yang, K.Y. Huh, Y. Lee, Experimental analysis of CO/H2 syngas with NOx and SOx reactions in pressurized oxy-fuel combustion, Energy, 219 (2021) 119550.
[3] G. Blanco-Brieva, J.M. Campos-Martin, S.M. Al-Zahrani, J.L.G. Fierro, Effectiveness of metal–organic frameworks for removal of refractory organo-sulfur compound present in liquid fuels, Fuel, 90 (2011) 190-197.
[4] R.K. Rahman, S. Barak, K.R.V. Manikantachari, E. Ninnemann, A. Hosangadi, A. Zambon, S.S. Vasu, Probing the effects of NOx and SOx Impurities on oxy-fuel combustion in supercritical CO2: Shock tube experiments and chemical kinetic modeling, Journal of Energy Resources Technology, 142 (2020).
[5] I. Ahmed, S.H. Jhung, Adsorptive denitrogenation of model fuel with CuCl-loaded metal–organic frameworks (MOFs), Chemical Engineering Journal, 251 (2014) 35-42.
[6] K. Jiang, H. Yu, L. Chen, M. Fang, M. Azzi, A. Cottrell, K. Li, An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology, Applied Energy, 260 (2020) 114316.
[7] Z.u. Rahman, J. Zhang, L. Zhang, X. Wang, Z. Yang, H. Tan, R.L. Axelbaum, A kinetic evaluation and optimization study on NOx reduction by reburning under pressurized oxy-combustion, Journal of Environmental Management, 290 (2021) 112690.
[8] A.J. Hernández-Maldonado, R.T. Yang, Desulfurization of diesel fuels via π-complexation with nickel (II)-exchanged X-and Y-zeolites, Industrial and Engineering Chemistry Research, 43 (2004) 1081-1089.
[9] L. Hockstad, M. Weitz, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013, Washington, DC 20460, U.S.A, 2015.
[10] L. Hockstad, L. Hanel, Inventory of U.S. Greenhouse Gas Emissions and Sinks,; Environmental System Science Data Infrastructure for a Virtual Ecosystem, 2018.
[11] G. Janssens-Maenhout, M. Crippa, D. Guizzardi, M. Muntean, E. Schaaf, J.G. Olivier, J. Peters, K.M. Schure, Fossil CO2 and GHG emissions of all world countries, Joint Research Center: Brussels, Belgium, 2017.
[12] H. Amini, S.-M. Taghavi-Shahri, S.B. Henderson, V. Hosseini, H. Hassankhany, M. Naderi, S. Ahadi, C. Schindler, N. Künzli, M. Yunesian, Annual and seasonal spatial models for nitrogen oxides in Tehran, Iran, Scientific Reports, 6 (2016).
[13] محمد محمودی آریا، حمید ممهدی هروی،  مطالعه عددی و آزمایشگاهی تاثیر رقیق ساز N2 بر تشکیل آلاینده NOx در شعله پیش‌آمیخته متان-هوا, نشریه علمی- پژوهشی سوخت و احتراق شماره اول., (1389).
 [14] D. Liu, J. Gui, Z. Sun, Adsorption structures of heterocyclic nitrogen compounds over Cu (I)Y zeolite: A first principle study on mechanism of the denitrogenation and the effect of nitrogen compounds on adsorptive desulfurization, Journal of Molecular Catalysis A: Chemical, 291 (2008) 17-21.
[15] S. Anisuzzaman, D. Krishnaiah, S. Abang, G. Labadin, Adsorptive Denitrogenation of fuel by oil palm shells as low cost adsorbents, Journal of Applied Sciences, 14 (2014) 3156.
[16] I. Ahmed, J.W. Jun, B.K. Jung, S.H. Jhung, Adsorptive denitrogenation of model fossil fuels with Lewis acid-loaded metal–organic frameworks (MOFs), Chemical Engineering Journal, 255 (2014) 623-629.
[17] R. Prins, Catalytic hydrodenitrogenation, in: Advances in Catalysis, Academic Press, 2001, pp. 399-464.
[18] Y. Feng, A study on the process conditions of removing basic nitrogen compounds from gasoline, Petroleum Science and Technology journal, 22 (2004) 1517-1525.
[19] S.-W. Lee, J.W. Ryu, W. Min, SK hydrodesulfurization (HDS) pretreatment technology for ultralow sulfur diesel (ULSD) production, Catalysis Surveys from Asia, 7 (2003) 271-279.
[20] G.W. Mushrush, M.A. Quintana, J.W. Bauserman, H.D. Willauer, Post-refining removal of organic nitrogen compounds from diesel fuels to improve environmental quality, Journal of Environmental Science and Health, Part A, 46 (2011) 176-180.
[21] Y. Sano, K.-H. Choi, Y. Korai, I. Mochida, Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization, Applied Catalysis B: Environmental, 49 (2004) 219-225.
[22] H.E. Emam, R.M. Abdelhameed, H.B. Ahmed, Adsorptive Performance of MOFs and MOF containing composites for clean energy and safe environment, Journal of Environmental Chemical Engineering, 8 (2020) 104386.
[23] G.C. Laredo, P.M. Vega-Merino, J.A. Montoya-de la Fuente, R.J. Mora-Vallejo, E. Meneses-Ruiz, J.J. Castillo, B. Zapata-Rendón, Comparison of the metal–organic framework MIL-101 (Cr) versus four commercial adsorbents for nitrogen compounds removal in diesel feedstocks, Fuel, 180 (2016) 284-291.
[24] I. Ahmed, M.M.H. Mondol, H.J. Lee, S.H. Jhung, Application of metal-organic frameworks in adsorptive removal of organic contaminants from water, Fuel and Air, Chemistry – An Asian Journal, 16 (2021) 185-196.
[25] F. Tian, X. Sun, X. Liu, H. Zhang, J. Liu, H. Guo, Y. Zhang, C. Meng, Effective adsorptive denitrogenation from model fuels over yttrium ion-exchanged Y zeolite, Chinese Journal of Chemical Engineering, 28 (2020) 414-419.
[26] A.J. Hernández‐Maldonado, R.T. Yang, Denitrogenation of transportation fuels by zeolites at ambient temperature and pressure, Angewandte Chemie, 116 (2004) 1022-1024.
[27] X. Hong, K. Tang, Absorptive Denitrogenation of diesel oil using a modified nay molecular sieve, Petroleum Science and Technology journal, 33 (2015) 1471-1478.
[28] H. Xin, T. Ke, Preparation and adsorption denitrogenation from model fuel or diesel oil of heteroatoms mesoporous molecular sieve Co-MCM-41, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38 (2016) 2560-2567.
[29] H. Zhang, G. Li, Y. Jia, H. Liu, Adsorptive removal of nitrogen-containing compounds from fuel, Journal of Chemical and Engineering Data, 55 (2009) 173-177.
[30] H. Zhang, H. Song, Study of Adsorptive denitrogenation of diesel fuel over mesoporous molecular sieves based on breakthrough curves, Industrial and Engineering Chemistry Research, 51 (2012) 16059-16065.
[31] M. Songolzadeh, M. Soleimani, M. Takht Ravanchi, Multi-response optimization of MIL-101 synthesis for selectively adsorbing N-compounds from fuels, Petroleum Science, 16 (2019) 1442-1454.
[32] M. Songolzadeh, M. Soleimani, M.T. Ravanchi, Synthesis and optimization of a new MIL-100 adsorbent for removing basic N-compounds from liquid fuels, Petroleum Science and Technology, 37 (2019) 2383-2390.
[33] محمد سنگل زاده، منصوره سلیمانی، مریم تخت روانچی، جداسازی کینولین از سوخت مدل ایزواکتان با استفاده از چارچوب‌های آلی – فلزی بر پایه مشتقات کربوکسیلیک اسیدها، رساله دکتری، مهندسی شیمی, صنعتی امیرکبیر (پلی تکنیک تهران), 1397.
[34] K. Castro, M. Pérez, M.D. Rodríguez-Laso, J.M. Madariaga, Peer Reviewed: FTIR Spectra Database of Inorganic Art Materials, in, ACS Publications, 2003.
[35] A. Kuptsov, G.N. Zhizhin, Handbook of Fourier transform Raman and infrared spectra of polymers, Elsevier, 1998.
[36] I. Ahmed, J.W. Jun, B.K. Jung, S.H. Jhung, Adsorptive denitrogenation of model fossil fuels with Lewis acid-loaded metal–organic frameworks (MOFs), Chemical Engineering Journal, 255 (2014) 623-629.
[37] Z. Wang, Z. Sun, L. Kong, G. Li, Adsorptive removal of nitrogen-containing compounds from fuel by metal-organic frameworks, Journal of Energy Chemistry, 22 (2013) 869-875.