مروری بر کاتالیست و افزودنی‌های کاتالیستی مؤثر در افزایش پروپیلن در فرایند FCC/ RFCC

نوع مقاله: علمی ترویجی

نویسندگان

1 عضو هیات علمی/پژوهشگاه پلیمر و پتروشیمی ایران

2 محقق دوره پسادکتری/پژوهشگاه پلیمر و پتروشیمی ایران

چکیده

فرایند شکست کاتالیستی یکی از مهمترین فرآیندهای شکستن مولکول‌های نفتی در جهان است که مواد سنگین و کم‌ارزش نفتی را به مواد سبک‌تر و با ارزش‌تر تبدیل می‌کند. کاتالیست نقش بسیار مهمی ‌‌در جهت‌دهی فرایند شکست کاتالیستی بستر سیال (FCC) ایفا می‌کند و کاتالیست‌هایFCC/RFCC یکی از مهمترین و پیچیده‌ترین کاتالیست‌های صنایع پالایشگاهی هستند. این کاتالیست‌ها می‌توانند جهت و مسیر واکنش شکست را تعیین کنند. با توجه به رشد چشمگیر تقاضای جهانی پروپیلن، استفاده از افزودنی‌های کاتالیستی بسیار مورد توجه قرار گرفته است. به طوری که کاتالیست‌های تعادلی مورد استفاده در واحدهای FCC نیازمند افزودنی‌هایی هستند که بتوانند با گزینش‌پذیری بالا فرایند شکست را به سمت تولید یک محصول خاص جهت‌دهی کنند. در این مقاله مروری، تحقیقات انجام شده روی افزودنی‌های مؤثر در افزایش بازده تولید پروپیلن در فرایند شکست کاتالیستی گردآوری شده و ضمن معرفی افزودنی‌ها، عملکرد آنها در فرایند شکست نیز ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review of catalyst and catalyst additives for maximization of propylene in FCC/RFCC process

نویسنده [English]

  • SARA TARIGHI 1
1 Academic Staff/ Iran Polymer and Petrochemical Institute
2 Post Doc. fellow/ Iran Polymer and Petrochemical Institute
چکیده [English]

Catalytic cracking is one of the most important catalytic conversions in the world in which heavy petroleum molecules can be converted to more valuable products. Catalysts play crucial role in the fluid catalytic cracking (FCC) and FCC/RFCC catalysts are one of the key and the finest catalysts in refining industries. These catalysts can determine the direction of catalytic cracking reaction. Due to increasing demand for propylene worldwide, use of catalyst additives have attracted more attention in recent years. The equilibrium FCC catalysts need additives to be more selective in certain favorite products. In this review article, studies on catalyst additives effective in maximization of propylene in catalytic cracking process are collected and the performance of additives has been also presented.

کلیدواژه‌ها [English]

  • Catalytic cracking
  • catalyst
  • Propylene
  • Zeolite
  • FCC
[1]        Hosseinpour N, Mortazavi Y, Bazyari A, Khodadadi A A (2009) Synergetic effects of Y-zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation. Fuel Processing Technology, 90: 171-179

[2]        He M-Y (2002) The development of catalytic cracking catalysts: acidic property related catalytic performance. Catalysis Today, 73: 49-55

[3]        P.B. Venuto E T H (1979) Fluid Catalytic Cracking with Zeolite Catalysts. Marcel Dekker, New York

[4]        Abul-Hamayel M A (2002) Effect of Feedstocks on High-Severity Fluid Catalytic Cracking. Chemical Engineering & Technology, 25: 65-70

[5]        Sadeghbeigi R (2012) Fluid catalytic cracking handbook; An expert Guide to practical operation, design, and optimization of FCC units. Elsevier,

[6]        Jentoft F C, Gates B C (1997) Solid-acid-catalyzed alkane cracking mechanisms: evidence from reactions of small probe molecules. Topics in Catalysis, 4: 1-13

[7]        Marcilly C (2001) Oil Gas Sci. Technol.Rev. IFP, 56: 499–514

[8]        Bellussi G, Pollesel P, Industrial applications of zeolite catalysis: production and uses of light olefins, Elsevier, 1201-1212, 2005.

[9]        Degnan Jr T F (2003) The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. Journal of Catalysis, 216: 32-46

[10]      Marcilly C R (2000) Where and how shape selectivity of molecular sieves operates in refining and petrochemistry catalytic processes. Topics in Catalysis, 13: 357-366

[11]      Creyghton E J, Downing R S (1998) Shape-selective hydrogenation and hydrogen transfer reactions over zeolite catalysts1. Journal of Molecular Catalysis A: Chemical, 134: 47-61

[12]      M.S. Rigutto, R. van Veen, L. Huve, in: J. Cejka, H. van Bekkum, A. Corma, Schueth F (2007) Introduction to Zeolite Science and Practice. Elsevier,

[13]      Zhu X, Jiang S, Li C, Chen X, Yang C (2013) Residue Catalytic Cracking Process for Maximum Ethylene and Propylene Production. Industrial & Engineering Chemistry Research, 52: 14366-14375

[14]      T.F. Gegnan, G. K. Chitnis, Schipper P H (2000) History of ZSM-5 fluid catalytic cracking additive development at Mobil. Microporous and mesoporous materials 35-36 245-252

[15]      Degnan T F, Chitnis G K, Schipper P H (2000) History of ZSM-5 fluid catalytic cracking additive development at Mobil. Microporous and Mesoporous Materials, 35–36: 245-252

[16]      Harding R H, Peters A W, Nee J R D (2001) New developments in FCC catalyst technology. Applied Catalysis A: General, 221: 389-396

[17]      Arandes J M, Torre I, Azkoiti M J, Ereña J, Olazar M, Bilbao J (2009) HZSM-5 Zeolite As Catalyst Additive for Residue Cracking under FCC Conditions. Energy & Fuels, 23: 4215-4223

[18]      Lappas A A, Triantafillidis C S, Tsagrasouli Z A, Tsiatouras V A, Vasalos I A, Evmiridis N P (2002) Development of new ZSM-5 catalyst-additives in the fluid catalytic cracking process for the maximization of gaseous alkenes yield. Elsevier,

[19]      Torre I, Arandes J M, Azkoiti M J, Olazar M, Bilbao J (2007) Cracking of Coker Naphtha with Gas−Oil. Effect of HZSM-5 Zeolite Addition to the Catalyst. Energy & Fuels, 21: 11-18

[20]      Adewuyi Y G (1997) Compositional changes in FCC gasoline products resulting from high-level additions of ZSM-5 zeolite to RE-USY catalyst. Applied Catalysis A: General, 163: 15-29

[21]      Lunsford J H (2000) Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catalysis Today, 63: 165-174

[22]      Ali Afshar Ebrahimi, Tarighi S (2015) Olefin  production  from  catalytic  cracking  of  light  fuel  oil  over  different additives. Iranian Journal of Catalysis, 5: 207-212

[23]      Ali Afshar Ebrahimi, Tarighi S (2015) The influence of temperature and catalyst additives on catalytic cracking of a heavy fuel oil. Petroleum science and technology, 33: 415-421

[24]      Feng X, Jiang G, Zhao Z, Wang L, Li X, Duan A, Liu J, Xu C, Gao J (2010) Highly Effective F-Modified HZSM-5 Catalysts for the Cracking of Naphtha To Produce Light Olefins. Energy & Fuels, 24: 4111-4115

[25]      Han S Y, Lee C W, Kim J R, Han N S, Choi W C, Shin C-H, Park Y-K (2004) Selective Formation of Light Olefins by the Cracking of Heavy Naphtha over Acid Catalysts. Elsevier,

[26]      Adewuyi Y G, Klocke D J, Buchanan J S (1995) Effects of high-level additions of ZSM-5 to a fluid catalytic cracking (FCC) RE-USY catalyst. Applied Catalysis A: General, 131: 121-133

[27]      Qi C, Wang Y, Ding X, Su H (2016) Catalytic cracking of light diesel over Au/ZSM-5 catalyst for increasing propylene production. Chinese Journal of Catalysis, 37: 1747-1754

[28]      Gao X, Tang Z, Zhang H, Ji D, Lu G, Wang Z, Tan Z (2010) Influence of particle size of ZSM-5 on the yield of propylene in fluid catalytic cracking reaction. Journal of Molecular Catalysis A: Chemical, 325: 36-39

[29]      Awayssa O, Al-Yassir N, Aitani A, Al-Khattaf S (2014) Modified HZSM-5 as FCC additive for enhancing light olefins yield from catalytic cracking of VGO. Applied Catalysis A: General, 477: 172-183

[30]      Lin L, Qiu C, Zhuo Z, Zhang D, Zhao S, Wu H, Liu Y, He M (2014) Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. Journal of Catalysis, 309: 136-145

[31]      AWAYSSA O R, Al-Yassir N, Aitani A M, Al-Khattaf S S, Metal-modified zeolite for catalytic cracking of heavy oils and process for producing light olefins. 2015, Google Patents.

[32]      Teimouri Sendesi S M, Towfighi J, Keyvanloo K (2012) The effect of Fe, P and Si/Al molar ratio on stability of HZSM-5 catalyst in naphtha thermal-catalytic cracking to light olefins. Catalysis Communications, 27: 114-118

[33]      Choi S, Catalyst for catalytic cracking of hydrocarbon, which is used in production of light olefin and production method thereof. 2011, Google Patents.

[34]      Ravichandran G, Chinthala P K, Doshi T, Kumar A, Gohel A, Mandal S, Das A K, Dinda S, Parekh A K, Fcc catalyst additive and a method for its preparation. 2013, Google Patents.

[35]      Abdalla A, Arudra P, Al-Khattaf S S (2017) Catalytic cracking of 1-butene to propylene using modified H-ZSM-5 catalyst: A comparative study of surface modification and core-shell synthesis. Applied Catalysis A: General, 533: 109-120

[36]      Zhang R, Wang Z (2015) Catalytic cracking of 1-butene to propylene by Ag modified HZSM-5. Chinese Journal of Chemical Engineering, 23: 1131-1137

[37]      Lv J, Hua Z, Ge T, Zhou J, Zhou J, Liu Z, Guo H, Shi J (2017) Phosphorus modified hierarchically structured ZSM-5 zeolites for enhanced hydrothermal stability and intensified propylene production from 1-butene cracking. Microporous and Mesoporous Materials, 247: 31-37

[38]      Epelde E, Gayubo A G, Olazar M, Bilbao J, Aguayo A T (2014) Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene. Chemical Engineering Journal, 251: 80-91

[39]      Aguado J, Serrano D P, Escola J M, Peral A (2009) Catalytic cracking of polyethylene over zeolite mordenite with enhanced textural properties. Journal of Analytical and Applied Pyrolysis, 85: 352-358

[40]      Corma A, Martı́nez-Triguero J n (1997) The Use of MCM-22 as a Cracking Zeolitic Additive for FCC. Journal of Catalysis, 165: 102-120

[41]      Jermy B R, Siddiqui M A B, Aitani A M, Saeed M R, Al-Khattaf S (2012) Utilization of ZSM-5/MCM-41 composite as FCC catalyst additive for enhancing propylene yield from VGO cracking. Journal of Porous Materials, 19: 499-509

[42]      Corma A, Fornés V, Melo F, Pérez-Pariente J, Zeolite Beta: Structure, Activity, and Selectivity for Catalytic Cracking, American Chemical Society, 49-63, 1988.

[43]      Camblor M A, Pérez-Pariente J (1991) Crystallization of zeolite beta: Effect of Na and K ions. Zeolites, 11: 202-210

[44]      Corma A, González-Alfaro V, Orchillés A V (1999) The role of pore topology on the behaviour of FCC zeolite additives. Applied Catalysis A: General, 187: 245-254

[45]      Corma A, Martı́nez-Triguero J n, Martı́nez C (2001) The Use of ITQ-7 as a FCC Zeolitic Additive. Journal of Catalysis, 197: 151-159

[46]      Costa A F, Cerqueira H S, Ferreira J M M, Ruiz N M S, Menezes S M C (2007) BEA and MOR as additives for light olefins production. Applied Catalysis A: General, 319: 137-143

[47]      Siddiqui M A B, Aitani A M, Saeed M R, Al-Yassir N, Al-Khattaf S (2011) Enhancing propylene production from catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives. Fuel, 90: 459-466

[48]      Hussain A I, Aitani A M, Kubů M, Čejka J, Al-Khattaf S (2016) Catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives for maximizing propylene yield. Fuel, 167: 226-239

[49]      Zeng P, Liang Y, Ji S, Shen B, Liu H, Wang B, Zhao H, Li M (2014) Preparation of phosphorus-modified PITQ-13 catalysts and their performance in 1-butene catalytic cracking. Journal of Energy Chemistry, 23: 193-200

[50]      Katiyar A, Yadav S, Smirniotis P G, Pinto N G (2006) Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. Journal of Chromatography A, 1122: 13-20

[51]      Yue Y, Gedeon A, Bonardet J-L, D'Espinose J-B, Fraissard J, Melosh N (1999) Direct synthesis of AlSBA mesoporous molecular sieves: characterization and catalytic activities. Chemical Communications, 1967-1968

[52]      Zhang X, Zhang F, Yan X, Zhang Z, Sun F, Wang Z, Zhao D (2008) Hydrocracking of heavy oil using zeolites Y/Al-SBA-15 composites as catalyst supports. Journal of Porous Materials, 15: 145-150