مروری بر فرایند گوگردزدایی هیدروژنی با استفاده از کاتالیزور‌های کبالت و مولیبدن بر پایه آلومینا

نوع مقاله: علمی ترویجی

نویسندگان

1 محقق دوره پسا دکتری/پژوهشگاه پلیمر و پتروشیمی

2 عضو هیئت علمی

چکیده

کاتالیزور‌های تجاری گوگردزدایی هیدروژنی، از آلومینا به عنوان پایه و سولفیدهای مولیبدن به عنوان جزء فعال و کبالت (نیکل) به عنوان پیش‌برنده تشکیل می‌شوند. خواص پایه (مساحت سطح، حجم و قطر حفرات)، بر هم‌کنش فلز- پایه و قدرت اسیدی پایه از عوامل مؤثر روی کارایی کاتالیزورند. پایه‌هایی با حفرات بزرگتر در گوگردزدایی خوراک‌های سنگین کارایی و طول عمر کاتالیزور را افزایش می‌دهد. در فاز فعال، فلزات بر هم ‌کنش کمی با سطح دارند. استفاده از عوامل کی‌لیت ساز یکی از راه‌هایی است که از تشکیل فاز غیر فعال فلزات روی آلومینا جلوگیری کرده و کارایی کاتالیزور را افزایش می‌دهد. افزودنی‌هایی مانند فسفر و بور در مجاورت آلومینا می‌توانند به بهبود قدرت اسیدی کاتالیزور، کاهش برهم‌کنش فلزات فعال با پایه و در نتیجه افزایش کارایی کاتالیزور منجر شوند. در این مقاله مروری، ضمن بحث درباره اهمیت فرایند گوگرد زدایی هیدروژنی، انواع فازهای کاتالیزوری و پارامترهای مؤثر بر فعالیت کاتالیزور بررسی می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An overview of the hydrodesulfurization process using Co/Mo-Alumina supported catalyst

نویسنده [English]

  • Azam Rahimi 2
1 Post Doc. researcher/ Iran Polymer and Petrochemical Institute
چکیده [English]

The commercial hydrodesulfurization catalysts are composed of sulfides of Mo as active component and Co (Ni) promoters supported on γ-alumina. The physical characteristic of the support (surface area, pore volume and pore diameter), interaction of active components-support and support acidity are the effective parameters on the catalytic activity. The support with large pore increases the life time and activity of the heavy oil catalyst. In the active phase of catalyst, the interaction of support and active component is low. The usage of chelating agents prevents the formation of inactive phase and increases the catalytic activity. Using additives such as phosphorous and boron can lead to improving the acidity of the catalysts and decreasing the interaction of active metals with supports which causes an increase in catalyst performance. In this review, the importance of hydrodesulfurization process, catalysis phases and the role of effective parameters on the catalyst activity are discussed.

کلیدواژه‌ها [English]

  • Hydrodesulfurization
  • Alumina
  • molybdenum
  • Cobalt
  • Nickel
  1. Babich I.V. , Moulijn J.A., Science and technology of novel processes for deep desulfurization of oil refinery streams: a review, Fuel, Vol.82, 2003, pp 607-631.
  2. Agency E.P., Federal Register, Vol.66, 2001, pp 5101–5150.
  3. Yoshimura Y., Toba M., Farag H., Sakanishi K., Ultra Deep Hydrodesulfurization of Gas Oils Over Sulfide and/or Noble Metal Catalysts, Catalysis Surveys from Asia, Vol.8, 2004, pp 47-60.
  4. Liu X., Li X., Yan Z., Facile route to prepare bimodal mesoporous γ-Al2O3 as support for highly active CoMo-based hydrodesulfurization catalyst, Applied Catalysis B: Environmental, Vol.121–122, 2012, pp 50-56.
  5. Pashigreva A.V., Bukhtiyarova G.A., Klimov O.V., Chesalov Y.A., Litvak G.S., Noskov A.S., Activity and sulfidation behavior of the CoMo/Al2O3 hydrotreating catalyst: The effect of drying conditions, Catalysis Today, Vol.149, 2010, pp 19-27.
  6. Rana M.S., Sámano V., Ancheyta J., Diaz J.A.I., A review of recent advances on process technologies for upgrading of heavy oils and residua, Fuel, Vol.86, 2007, pp 1216-1231.
  7. Kressmann S., Morel F., Harlé V., Kasztelan S., Recent developments in fixed-bed catalytic residue upgrading, Catalysis Today, Vol.43, 1998, pp 203-215.
  8. Parkhomchuk E.V., Lysikov A.I., Okunev A.G., Parunin P.D., Semeikina V.S., Ayupov A.B., Trunova V.A., Parmon V.N., Meso/Macroporous CoMo Alumina Pellets for Hydrotreating of Heavy Oil, Industrial & Engineering Chemistry Research, Vol.52, 2013, pp 17117-17125.
  9. Chen W., Maugé F., van Gestel J., Nie H., Li D., Long X., Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts, Journal of Catalysis, Vol.304, 2013, pp 47-62.
  10. Marafi A., Hauser A., Stanislaus A., Atmospheric Residue Desulfurization Process for Residual Oil Upgrading:  An Investigation of the Effect of Catalyst Type and Operating Severity on Product Oil Quality, Energy & Fuels, Vol.20, 2006, pp 1145-1149.
  11. Galiasso R., Blanco R., Gonzalez C., Quinteros N., Deactivation of hydrodemetallization catalyst by pore plugging, Fuel, Vol.62, 1983, pp 817-822.
  12. Breysse M., Afanasiev P., Geantet C., Vrinat M., Overview of support effects in hydrotreating catalysts, Catalysis Today, Vol.86, 2003, pp 5-16.
  13. Iwamoto R. , Grimblot J., Influence of Phosphorus on the Properties of Alumina-Based Hydrotreating Catalysts, in Advances in Catalysis, Werner O. Haag, B.C.G. and Helmut, K., Editors. 1999, Academic Press. pp 417-503.
  14. Breysse M., Geantet C., Afanasiev P., Blanchard J., Vrinat M., Recent studies on the preparation, activation and design of active phases and supports of hydrotreating catalysts, Catalysis Today, Vol.130, 2008, pp 3-13.
  15. Michaud P., Lemberton J.L., Pérot G., Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene: Effect of an acid component on the activity of a sulfided NiMo on alumina catalyst, Applied Catalysis A: General, Vol.169, 1998, pp 343-353.
  16. Bataille F., Lemberton J.L., Pérot G., Leyrit P., Cseri T., Marchal N., Kasztelan S., Sulfided Mo and CoMo supported on zeolite as hydrodesulfurization catalysts: transformation of dibenzothiophene and 4,6-dimethyldibenzothiophene, Applied Catalysis A: General, Vol.220, 2001, pp 191-205.
  17. Welters W.J.J., de Beer V.H.J., van Santen R.A., Influence of zeolite acidity on thiophene hydrodesulfurization activity, Applied Catalysis A: General, Vol.119, 1994, pp 253-269.
  18. Lecrenay E., Sakanishi K., Mochida I., HDS and HDN Catalysis for Super-Clean FuelsCatalytic hydrodesulfurization of gas oil and model sulfur compounds over commercial and laboratory-made CoMo and NiMo catalysts: Activity and reaction scheme, Catalysis Today, Vol.39, 1997, pp 13-20.
  19. Rashidi F., Sasaki T., Rashidi A.M., Nemati Kharat A., Jozani K.J., Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity, Journal of Catalysis, Vol.299, 2013, pp 321-335.
  20. Huirache-Acuña R., Pawelec B., Loricera C.V., Rivera-Muñoz E.M., Nava R., Torres B., Fierro J.L.G., Comparison of the morphology and HDS activity of ternary Ni(Co)-Mo-W catalysts supported on Al-HMS and Al-SBA-16 substrates, Applied Catalysis B: Environmental, Vol.125, 2012, pp 473-485.
  21. van Veen J.A.R., Colijn H.A., Hendriks P.A.J.M., van Welsenes A.J., Hydroprocesses On the formation of type I and type II NiMoS phases in NiMo/Al2O3 hydrotreating catalysts and its catalytic implications, Fuel Processing Technology, Vol.35, 1993, pp 137-157.
  22. Blanchard P., Lamonier C., Griboval A., Payen E., New insight in the preparation of alumina supported hydrotreatment oxidic precursors: A molecular approach, Applied Catalysis A: General, Vol.322, 2007, pp 33-45.
  23. Al-Dalama K. , Stanislaus A., A Comparative Study of the Influence of Chelating Agents on the Hydrodesulfurization (HDS) Activity of Alumina and Silica−Alumina-Supported CoMo Catalysts, Energy & Fuels, Vol.20, 2006, pp 1777-1783.
  24. Nava R., Pawelec B., Morales J., Ortega R.A., Fierro J.L.G., Comparison of the morphology and reactivity in HDS of CoMo/HMS, CoMo/P/HMS and CoMo/SBA-15 catalysts, Microporous and Mesoporous Materials, Vol.118, 2009, pp 189-201.
  25. Stranick M.A., Houalla M., Hercules D.M., The effect of boron on the state and dispersion of CoAl2O3 catalysts, Journal of Catalysis, Vol.104, 1987, pp 396-412.
  26. Sentorun-Shalaby C., Saha S.K., Ma X., Song C., Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel, Applied Catalysis B: Environmental, Vol.101, 2011, pp 718-726.
  27. Bian S.-W., Zhang Y.-L., Li H.-L., Yu Y., Song Y.-L., Song W.-G., γ-Alumina with hierarchically ordered mesopore/macropore from dual templates, Microporous and Mesoporous Materials, Vol.131, 2010, pp 289-293.
  28. Trimm D.L. , Stanislaus A., The control of pore size in alumina catalyst supports: A review, Applied Catalysis, Vol.21, 1986, pp 215-238.
  29. Nampi P.P., Ghosh S., Warrier K.G., Calcination and associated structural modifications in boehmite and their influence on high temperature densification of alumina, Ceramics International, Vol.37, 2011, pp 3329-3334.
  30. Na K., Choi M., Ryoo R., Recent advances in the synthesis of hierarchically nanoporous zeolites, Microporous and Mesoporous Materials, Vol.166, 2013, pp 3-19.