ریفرمینگ متان با کربن دی‌اکسید در رآکتورهای کوپل‌شده حرارتی: روشی برای تولید گازسنتز همراه با کاهش نشر گازهای گلخانه‌ای

نوع مقاله: علمی ترویجی

نویسندگان

دانشگاه خلیج فارس

چکیده

امروزه هیدروژن و گازسنتز دو ماده اولیه بسیار مهم در صنایع نفت، گاز و پتروشیمی محسوب می‌شوند که نیاز به این دو ماده به طور چشمگیری روز به روز در حال افزایش است. بنابراین، تلاش برای یافتن فرآیندهای اقتصادی و دوستدار محیط‌زیست برای تولید این مواد، لازم و ضروری است. از مهمترین روش‌های تولید گازسنتز گازی‌‌کردن زغال‌سنگ، تبدیل متان با بخارآب، اکسیداسیون جزئی متان، تبدیل اتوترمال متان، تبدیل متان با کربن‌دی‌اکسید و فرآیند تری‌ریفورمینگ متان می‌باشند. دراین مقاله، تحقیقات انجام شده در زمینه تبدیل متان با کربن‌دی‌اکسید و همچنین کوپل این روش با روش‌های دیگر تولید گازسنتز ارائه شده است. نتایج تحقیقات صورت گرفته نشان می‌دهد فرآیند تبدیل متان با کربن‌دی‌اکسید به دلیل کاهش نشر گازهای گلخانه‌ای و تولید گاز سنتزی مناسب جهت فرآیندهای پایین‌دستی، می‌تواند جایگزین مناسبی برای فرآیندهای حال حاضر مانند تبدیل متان با بخارآب باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Methane Reforming using Carbon Dioxide in Thermally Coupled Reactors: A method for Synthesis Gas Production with decreasing Greenhouse Gases Emission

چکیده [English]

In the recent years, hydrogen and synthesis gas are major raw materials for petroleum, gas and petrochemical industries. Demands for these gases all days are increased. By considering consuming of hydrogen and synthesis gas in different industries, it is mandatory to investigate economic and environmental-friendly process for producing thesis gases. Various methods for production of synthesis gas are: coal gasification, steam reforming of methane, partial oxidation of methane, auto thermal reforming of methane, dry reforming of methane and tri-reforming of methane. In this work, several researches about dry reforming of methane plus coupling of several methods have been introduced. Investigated results indicate that dry reforming of methane produces synthesis gases for downstream process by reduction of green house gases emission to environment can be good alternative of currently process.

کلیدواژه‌ها [English]

  • Synthesis gas
  • Carbon dioxide
  • Dry reforming of methane
  • Coupled Reactors
1. Peña, M.A., Gómez, J.P., and Fierro, J.L.G., New catalytic routes for syngasand hydrogen production. Applied Catalysis A: General, vol.144, 1996, pp 7-57.
2. Rostrup-Nielsen, J.R., Production of synthesis gas. Catalysis Today, vol.18, 1993, pp 305-324.
3. Tsang, S.C., Claridge, J.B., and Green, M.L.H., Recent advances in theconversion of methane to synthesis gas. Catalysis Today, vol. 23, 1995, pp 3-15.
4. Rostrup-Nielsen, J.R., Catalytic Steam Reforming Catalysis Science and Technology, Berlin.1984
5. Bharadwaj, S.S. Schmidt, L.D., Catalytic partial oxidation of natural gasto syngas. Fuel Processing Technology, vol.42, 1995, pp 109-127.
6. Climate Change 2007. Intergovernmental Panel on Climate Change. Cambridge University Press, 2007.
7. IPCC. IPCC Special Report: Carbon Dioxide Capture and Storage, 2005.
8. Birol, f., World Energy Outlook 2006, International Energy Agency (IEA), 2006.
9.Moulijn, J., Stankiewicz, A., Grievink, J. G., orak, A., Process intensification and process systems engineering: A friendly symbiosis, Comput Chem Eng, vol.32, 2008, pp 3-11.
10. Ponce-Ortega, J., Al-Thubaiti, M., El-Halwagi, M., Process intensification: New Understanding and Systematic Approach, Chem Eng Process.vol.53, 2012, pp 63–75.
11.Zanfir, M., Gavriilidis, A., “Catalytic combustion assisted methane steam reforming in a catalytic plate reactor, Chem Eng Sci, vol.58, 2003, pp 3947-3960.
12. Saunders, E A., Heat exchanges: selection, design and construction, New12. York: Longman Scientific and Technical 1988.
13. Rahimpour, M. R., Dehnavi, M. R., Allahgolipour, F., Iranshahi, D. and Jokar, S. M., Assessment and comparison of different catalytic coupling exothermic endothermic reactions. Applied energy, vol.99, 2012, pp 496–512.
14. Dittmeyer, R., Caro, J., Ertl, G., Knozinger, H.,Schuth, F.,Wwitkamp, J.,Handbook of heterogeneous catalysis,2008.
15. Farniaei1, M., Rahnama, H., Abbasi, M., Rahimpour, M., R., Simultaneous production of two types of synthesis gas by steam and tri-reforming of methane using an integrated thermally coupled reactor: mathematical modeling, International Journal of energy research,2014, vol.38, pp 1260-1277
16. Aasberg-Petersen, K., Dybkjær, I, Ovesen, C.V.,Schjqdt, N.C.,Sehested, J., Thomsen, S.G. Natural gas to synthesis gas – Catalysts and catalytic processes, Journal of Natural Gas Science and Engineering.vol.3, 2013, pp 423-459.
17. Ventura, C., Azevedo, J.L.T., Development of a numerical model for natural gas steam reforming and coupling with a furnace model. International Journal of Hydrogen Energy.vol.35, 2010, pp 9776-9787.
18. Song, C. Tri-reforming: A new process for reducing CO2 emission. Chemical Innovation.vol. 31, 2001, pp 21-26.
19.Artur J. Majewski, Joseph Wood ,Tri-reforming of methane over Ni@SiO2 catalyst, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK/ 2014
20. Wender, I., Reactions of synthesis gas, Fuel Processing Technology vol.48, 1996, pp 189-297.
21.Liming Shi, David J. Bayless, Michael, E., Prudich A CFD model of autothermal reforming, International Journal of  Hydrogen .vol.34,2009,pp 7666 – 7675.
22. Er-rbib, H., Bouallou, C., Werkoff, F., Dry Reforming of Methane – Review of Feasibility Studies, Chemical Engineering Transactions, vol.29,2012,pp 163-168.
23. Foo, S.Y., Oxidative dry reforming of methane over alumina-supported Co-Ni catalyst systems, Ph.D Thesis, the University of New South Wales, Sydney, Australia, 2012.
24. Nikoo,M.K.,Amin, N.A.S.,Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation, Fuel Processing Technology,vol.92,2011,pp 678–691.
25. Bradford, M.C.J., Vannice, M.A., CO2 Reforming of CH4, Catalysis Reviews: Science and Engineering, vol.41, 1999, pp1–42.
26. Saad, J.M, Williams, P.T., Manipulating the H2/CO ratio from dry reforming of simulated mixed waste plastics by the addition of steam, Fuel Processing Technology, vol.156, 2017, pp 331-338.
27.Gould, Troy D.,Montemore, M., Lubers,M., Ellis,D.,Weimer, W., Falconer, J., Medlin,W., Enhanced dry reforming of methane on Ni and Ni-Pt catalysts synthesized by atomic layer deposition, General.vol.492,2015, pp107–116.
28. Whitmore, N.W., Greenhouse gas catalytic reforming to syngas, M.S Thesis, the Columbia University, New York, USA, 2007.
29. Rostrup-Nielsen, J.R., Equilibriums of decomposition reactions of carbon monoxide and methane over nickel catalysts, Journal of Catalysis, vol.27, 1972, pp343-356.
30. Richardson, J.T., Paripatyadar, S.A., Carbon dioxide reforming of methane with supported rhodium, Applied Catalysis 61, vol.61, 1990, pp 293-309.
31. Rostrup-Nielsen,J.R., Production of synthesis gas, Catalysis Today,vol.18,1994,pp305-324.
32. Prabhu,A.K., Liu,A., Lovell,L.G., Oyama,S.T., Modeling of the methane reforming reaction in hydrogen selective membrane reactors, Journal of Membrane Science ,vol.177,2000,pp 83–95.
33. Abashar, M.E.E., Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors, International Journal of Hydrogen Energy, vol.29, 2004, pp799 – 808.
34. Quiroga, M.M.B.,Luna,A.E.C.,Kinetic Analysis of Rate Data for Dry Reforming of Methane, Industrial Engineering Chemistry Research,vol.46,2007,pp 5265-5270.
35. Nikoo,M.K.,Amin, N.A.S., Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation,Fuel Processing Technology,vol.92,2011, pp 678–691.
36. Kahle,Lea C.S., Roussière, T., Maier, L., Delgado,K.H., Wasserschaff,G., Schunk,S.A., Deutschmann,O., Methane Dry Reforming at High Temperature and Elevated Pressure: Impact of Gas-Phase Reactions, Industrial and Engineering Chemistry Research,vol.52,2013,pp 11920−11930.
37. Lim,Y., Lee,C., Jeong,Y.S., Song,H., Lee,C.J. ,Han,C., Optimal Design and Decision for Combined Steam Reforming Process with Dry Methane Reforming to Reuse CO2 as a Raw Material, Industrial and Engineering Chemistry Research,vol.52, 2012, pp 4982−4989.
38. Liu,D., Wang,Y., Shi,D., Jia,X., Borgna,A., Lau,R., Yang,Y., Methane reforming with carbon dioxide over a Ni/ZiO2-SiO2 catalyst: Influence of pretreatment gas atmospheres,International Journal of Hydrogen Energy.vol.37,2012,pp 10135-10144.
40. Udengaard, N.R., Bak Hansen, J.-H., Hanson, D.C., and Stal, J.A., Sulfur Passivated Reforming Process Lowers Syngas H2/CO Ratio. Oil & GasJournal, vol. 90, 1992, pp 62-67.
41. Teuner, S.C., Neumann, P., and Von Linde, F., CO through CO2 Reforming: The Calcor Standard and Calcor Economy Processes, Oil Gas European Magazine, vol.3, 2001, pp 44-46.
 
42. Foo, S.Y., Cheng, C.K., Nguyen, T.-H., Adesina, A.A., Oxidative CO2 reforming of methane on Alumina-Supported Co-Ni catalyst. Industrial & Engineering Chemistry Research, vol.49, 2010, pp10450-10458.
43. Abbasi, M., Farniaei, M., Rahimpour, M.R., Shariati A., Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying: Modeling and simulation, Journal of Natural Gas Science and Engineering, 2014, vol. 20 pp 132-146.
44. Abbasi, M., Farniaei, M., Rahimpour, M.R., Shariati A., Abbasi, S. Synthesis Gas Production with Simultaneous CO2 Capturing and Consuming: Application of Chemical Looping Combustion by Employing Fe45-Al2O3 and Mn40/Mg–ZrO2 Oxygen Carriers, The Canadian Journal of Chemical Engineering 2015, vol. 93, pp 2124−2134.
45. Abbasi, M., Farniaei, M., Rahimpour, M.R., Shariati A., Simultaneous syngas production with different H2/CO ratio in a multi-tubular methane steam and dry reformer by utilizing of CLC, Journal of Energy Chemistry 2015, vol. 24, pp 54-64.