ارزیابی انرژی و اکسرژی فرآیند تولید هیدروژن از تشکیل مجدد بخار گلیسرول جهت بهبود عملکرد

نوع مقاله : پژوهشی

نویسندگان

1 پتروشیمی لرستان، خرم آباد، لرستان، ایران

2 شرکت ملی گاز ایران (NIGC)، مجتمع گاز پارس جنوبی (SPGC)، عسلویه، ایران

3 آزمایشگاه نانوتکنولوژی ، دانشکده فنی دانشگاه تهران ، تهران ، ایران

4 گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه یاسوج، یاسوج، ایران

5 دپارتمان مهندسی فرآیند، دانشکده مهندسی شیمی ، دانشگاه تربیت مدرس تهران، ایران

چکیده

در این مطالعه تولید هیدروژن از ریفرمینگ بخار گلیسرول (GSR) به عنوان منبع تجدیدپذیر انرژی مورد بررسی قرار گرفته است. برای همه نقاط، شبیه­سازی موازنه مربوط به اکسرژی صورت گرفت و شدت انتشار کربن ‌دی‌اکسید و شدت تولید هیدروژن نیز برای فرآیند ارائه شده، محاسبه گردید. نتایج شبیه­سازی نشان دادند که شدت تولید هیدروژن در فرآیند GSR برابر با  3/92 بوده که در مقایسه با فرآیندهای متداول در جایگاه خوبی قرار دارد. تحلیل اکسرژی نشان داد که کل تخریب اکسرژی فرآیند GSR معادل با 24755/871 کیلووات است که در این بین، ریفرمر بخار گلیسرول با سهم 97/18 درصدی دارای بالاترین میزان تخریب اکسرژی است. براساس ارزیابی زیست محیطی، در مجموع از فرآیند GSR معادل با 24/45 تن در ساعت کربن ‌دی‌اکسید منتشر می­شود که سهم انتشار برای جریان­های فرآیندی، امکانات و تسهیلات فرآیندی و خوراک به ترتیب 96/59، 3/414 و صفر درصد است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Energy and Exergy of Hydrogen Production Process from Glycerol Steam Reformation to Improve Performance

نویسندگان [English]

  • Ehsan Jafarian 1
  • Morteza Afkhamipour 2
  • Hamid Safarzadeh 3
  • Parviz Darvishi 4
  • mohammad shamsi 5
1 Lorestan Petrochemical,, Khorram Abad,, Lorestan, Iran
2 National Iranian Gas Company (NIGC), South Pars Gas Complex (SPGC), Asalouye, Iran
3 Nanotechnology Laboratory, Faculty of Engineering, University of Tehran, Tehran, Iran
4 Chemical Engineering Department, School of Engineering, Yasuoj University, Yasuj, Iran
5 Process Engineering Department, Tarbiat Modares University, Tehran, Iran
چکیده [English]

In this study, hydrogen production from glycerol steam reforming (GSR) has been investigated as a renewable source of energy. Exergy-related balance was done for all simulation points, and carbon dioxide emission intensity and hydrogen production intensity were also calculated for the presented process. The simulation results showed that the hydrogen production intensity in the GSR process was equal to 3.92 kmole H2/kmole feed, which is in a good place compared to conventional processes. Exergy analysis showed that the total exergy destruction of the GSR process is equal to 24755.871 kW, among which, the glycerol steam reformer has the highest exergy destruction rate with a share of 97.18%. Based on the environmental assessment, in total, the GSR process emits carbon dioxide equivalent to 24.45 tons/h, and the share of emissions for process flows, utility and feed is 96.59, 3.414 and 0.00 percent, respectively.

کلیدواژه‌ها [English]

  • Hydrogen Production
  • Glycerol Vapor Reforming
  • Energy Analysis
  • Exergy
  • Process Performance Improvement
[1] C.A. Schwengber, H.J. Alves, R.A. Schaffner, F.A. Da Silva, R. Sequinel, V.R. Bach, R.J. Ferracin, "Overview of glycerol reforming for hydrogen production", Renewable and Sustainable Energy Reviews, vol. 58, pp. 259-266, 2016.
[2] M. Shamsi, M. Rahimi, M. Sheidaei, S.H. Majidi Dorcheh, M. Bonyadi, "A new integrated process for LNG production based on the single mixed refrigerant: energy, exergy, environmental and economic analysis", Arabian Journal for Science and Engineering, pp. 1-17, 2023.
[3] M. Shamsi, A.A. Obaid, S. Farokhi, A. Bayat, "A novel process simulation model for hydrogen production via reforming of biomass gasification tar", International Journal of Hydrogen Energy, vol.47,pp. 772-781, 2022.
[4] M. Shamsi, S. Moghaddas, O. Torabi, S. Bakhshehshi, M. Bonyadi, "Design and analysis of a novel structure for green syngas and power cogeneration based on PEM electrolyzer and Allam cycle", International Journal of Hydrogen Energy, 2023.
[5] B. Karmakar, G. Halder, "Progress and future of biodiesel synthesis: Advancements in oil extraction and conversion technologies", Energy conversion and management, vol.182, pp.307-339, 2019.
[6] G.M. Pinto, T.A. de Souza, C.J. Coronado, L.F.V. Flôres, G.R. Chumpitaz, M.H. da Silva, "Experimental investigation of the performance and emissions of a diesel engine fuelled by blends containing diesel s10, pyrolysis oil from used tires and biodiesel from waste cooking oil", Environmental Progress & Sustainable Energy, vol.38, pp. 13199, 2019.
[7] N. Yahya, S.K. Kamarudin, N. Karim, M. Masdar, K. Loh, K. Lim, "Durability and performance of direct glycerol fuel cell with palladium-aurum/vapor grown carbon nanofiber support", Energy Conversion and Management, vol.188, pp. 120-130, 2019.
[8] L. Zhou, Y. Xu, X. Yang, T. Lu, L. Han, "Utilization of biodiesel byproduct glycerol: Production of methyl lactate over Au/CuO and Sn-Beta binary catalyst under mild reaction conditions", Energy conversion and management, vol. 196, pp. 277-285, 2019.
[9] N. Harun, S.Z. Abidin, O.U. Osazuwa, Y.H. Taufiq-Yap, M.T. Azizan, "Hydrogen production from glycerol dry reforming over Ag-promoted Ni/Al2O3", International Journal of Hydrogen Energy, vol.44, pp. 213-225, 2019.
[10] J. Remón, M. Laseca, L. García, J. Arauzo, "Hydrogen production from cheese whey by catalytic steam reforming: Preliminary study using lactose as a model compound", Energy conversion and management, vol. 114, pp. 122-141, 2019.
[11] M. Wappler, D. Unguder, X. Lu, H. Ohlmeyer, H. Teschke, W. Lueke, "Building the green hydrogen market–Current state and outlook on green hydrogen demand and electrolyzer manufacturing", International Journal of Hydrogen Energy, vol. 47, pp. 33551-33570, 2022.
[12] D. Rocha, T. De Souza, C. Coronado, J. Silveira, R. Silva, "Exergoenvironmental analysis of hydrogen production through glycerol steam reforming", International Journal of Hydrogen Energy, vol. 46, pp. 1385-1402, 2021.
[13] C.-W. Huang, B.-S. Nguyen, J.C.-S. Wu, V.-H. Nguyen, "A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water", International Journal of Hydrogen Energy, vol. 45, pp. 18144-18159, 2020.
[14] K. Kousi, N. Chourdakis, H. Matralis, D. Kontarides, C. Papadopoulou, X. Verykios, "Glycerol steam reforming over modified Ni-based catalysts", Applied Catalysis A: General, vol. 518, pp. 129-141, 2016.
[15] A. AlNouss, M. Ibrahim, S.A. Al-Sobhi, "Potential energy savings and greenhouse gases (GHGs) emissions reduction strategy for natural gas liquid (NGL) recovery: Process simulation and economic evaluation", Journal of Cleaner Production, vol.194, pp. 525-539, 2018.
[16] T.N. Do, J. Kim, "Process development and techno-economic evaluation of methanol production by direct CO2 hydrogenation using solar-thermal energy", Journal of CO2 Utilization, vol. 33, pp. 461-472, 2019.
[17] M. Shamsi, S. Moghaddas, E. Naeiji, S. Farokhi, "Techno-economic, energy, exergy, and environmental comparison of hydrogen production from natural gas, biogas, and their combination as feedstock", Arabian Journal for Science and Engineering, vol.48, pp. 8971-8987, 2023.
[18] I.I. Olateju, C. Gibson-Dick, S.C.O. Egede, A. Giwa, "Process development for hydrogen production via water-gas shift reaction using aspen HYSYS", International Journal of Engineering Research in Africa, vol. 30, pp. 144-153, 2017.
[19] P. Queirós, M. Costa, R. Carvalho, "Co-combustion of crude glycerin with natural gas and hydrogen", Proceedings of the Combustion Institute, vol. 34, pp. 2759-2767, 2013.
[20] M.D. Bohon, B.A. Metzger, W.P. Linak, C.J. King, W.L. Roberts, "Glycerol combustion and emissions", Proceedings of the combustion institute, vol.33, pp.2717-2724, 2011.
[21] A. Boyano, A. Blanco-Marigorta, T. Morosuk, G. Tsatsaronis, "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production", Energy, vol. 36, pp.2202-2214, 2011.
[22] S. Authayanun, A. Arpornwichanop, Y. Patcharavorachot, W. Wiyaratn, S. Assabumrungrat, "Hydrogen production from glycerol steam reforming for low-and high-temperature PEMFCs", International Journal of Hydrogen Energy, vol.36, pp. 267-275, 2011.
[23] D. Unlu, N.D. Hilmioglu, "Application of aspen plus to renewable hydrogen production from glycerol by steam reforming", International journal of hydrogen energy, vol. 45, pp. 3509-3515, 2020.
[24] M. Shamsi, S. Farokhi, M. Pourghafari, A. Bayat, "Tuning the natural gas dew point by Joule-Thomson and Mechanical Refrigeration processes: A comparative energy and exergy analysis", Journal of Petroleum Science and Engineering, vol. 212, pp.110270, 2022.
[25] T.J. Kotas, The exergy method of thermal plant analysis, Paragon Publishing, 2012.
[26] M. Mehrpooya, M.J. Zonouz, "Analysis of an integrated cryogenic air separation unit, oxy-combustion carbon dioxide power cycle and liquefied natural gas regasification process by exergoeconomic method", Energy conversion and management, vol.139, pp. 245-259, 2017.
[27] M.S. Macedo, E. Kraleva, H. Ehrich, M. Soria, L.M. Madeira, "Hydrogen production from glycerol steam reforming over Co-based catalysts supported on La2O3, AlZnOx and AlLaOx", International Journal of Hydrogen Energy, vol. 47, pp. 33239-33258, 2022.
[28] M.E. Sad, H.A. Duarte, C. Vignatti, C. Padró, C.R. Apesteguia, "Steam reforming of glycerol: Hydrogen production optimization", international journal of hydrogen energy, vol.40, pp. 6097-6106, 2015.
[29] S. Adhikari, S.D. Fernando, S.F. To, R.M. Bricka, P.H. Steele, A. Haryanto, "Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts", Energy & Fuels, vol. 22, pp. 1220-1226, 2008.
[30] M. Sagharizade, T. Asadi, B. Abolpour, "Designing a new method to remove carbon dioxide as an environmental pollutant and produce methanol", SN Applied Sciences, vol.1, pp. 994, 2019.
[31] Y. Qian, J. Liu, Z. Huang, A. Kraslawski, J. Cui, Y. Huang, "Conceptual design and system analysis of a poly-generation system for power and olefin production from natural gas", Applied energy, vol. 86, pp. 2088-2095, 2009.
[32] A.M.E.H. Chehade, E.A. Daher, J.C. Assaf, B. Riachi, W. Hamd, "Simulation and optimization of hydrogen production by steam reforming of natural gas for refining and petrochemical demands in Lebanon", International Journal of Hydrogen Energy, vol. 45, pp. 33235-33247, 2020.
[33] Y.K. Salkuyeh, B.A. Saville, H.L. MacLean, "Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies", International Journal of hydrogen energy, vol. 42, pp. 18894-18909, 2017.
[34] U. Hamid, A. Rauf, U. Ahmed, M.S.A.S. Shah, N. Ahmad, "Techno-economic assessment of process integration models for boosting hydrogen production potential from coal and natural gas feedstocks", Fuel, vol. 266, pp. 117111, 2020.
[35] H. Ishaq, I. Dincer, "Comparative assessment of renewable energy-based hydrogen production methods", Renewable and Sustainable Energy Reviews, vol. 135, pp. 110192, 2021.
[36] K. Li, Y. Gao, S. Zhang, G. Liu, "Study on the energy efficiency of bioethanol-based liquid hydrogen production process", Energy, vol. 238, pp. 122032, 2022.
[37] E. Akrami, I. Khazaee, A. Gholami, "Comprehensive analysis of a multi-generation energy system by using an energy-exergy methodology for hot water, cooling, power and hydrogen production", Applied Thermal Engineering, vol.129, pp. 995-1001, 2018.
[38] H. Ghaebi, B. Farhang, T. Parikhani, H. Rostamzadeh, "Energy, exergy and exergoeconomic analysis of a cogeneration system for power and hydrogen production purpose based on TRR method and using low grade geothermal source", Geothermics, vol. 71, pp. 132-145, 2018.