جذب سطحی دی‌بنزو‌تیوفن توسط نانوکامپوزیت کربن فعال پوست گردو/کیتوسان/آهن: سینتیک، تعادل، ترمودینامیک و مدل سازی انتقال جرم

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه یاسوج، یاسوج

2 دانشجوی کارشناسی ارشد، گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه یاسوج، یاسوج

3 دانشیار، گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه یاسوج، یاسوج

چکیده

حذف گوگرد و ترکیبات گوگردی از سوخت مایع از بحث­های تحقیقاتی می­باشد. در این پژوهش، کربن فعال توسط فعال­سازی شیمیایی از پوست گردو تهیه، سپس توسط نانوساختار آهن و پلیمر زیستی کیتوسان به صورت مجزا و با هم اصلاح و در جهت حذف دی­بنزوتیوفن از سوخت ایزواکتان استفاده شد. آنالیزهای BET، EDX-SEM و FTIR جهت بررسی جاذب استفاده شد. آزمایش­های تعادلی نشان داد که فرآیند جذب به صورت تک لایه و حداکثر ظرفیت جذب جاذب به ترتیب 285/71 و 178/57 میلی­گرم دی­بنزوتیوفن در گرم جاذب اصلاحی توسط نانوساختار آهن و در گرم جاذب اصلاحی توسط نانوساختار آهن و پلیمر کیتوسان می­باشد. نتایج داده‌های سینتیکی نشان داد که مدل سینتیک شبه مرتبه دوم با نتیجه تجربی همخوانی دارد. جهت تعیین پارامترهای انتقال جرم از مدل ریاضی نفوذ فیلم حفره سطح توسط نرم­افزار MATLAB استفاده شد و مشاهده گردید مراحل انتقال جرم خارجی و نفوذ حفره­ای در جذب دی­بنزوتیوفن اهمیت بیشتری دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Adsorption of Dibenzothiophene by Walnut Shell-Activated Carbon/Chitosan/Iron Nanocomposite: Kinetics, Equilibrium, Thermodynamics and Mass Transfer Modeling

نویسندگان [English]

  • Hakimeh Sharififard 1
  • fatemeh Boostani 2
  • Asghar lashanizadegan 3
  • parviz darvishi 3
1 Assistant Professor, Department of Chemical Engineering, Faculty of Technical Engineering, University of Yasuj, Yasuj, Iran
2 M.Sc Student, Department of Chemical Engineering, Faculty of Technical Engineering, University of Yasuj, Yasuj, Iran
3 Associate Professor , Department of Chemical Engineering, Faculty of Technical Engineering, University of Yasuj, Yasuj, Iran
چکیده [English]

Removing sulfur and sulfur compounds from liquid fuel is one of the most important research topics. In this research, activated carbon was prepared by chemical activation from walnut shells, then modified by iron nanostructure and chitosan separately and together, and used to remove dibenzothiophene from isooctane fuel. BET, EDX-SEM, and FTIR analyses were used to investigate the adsorbent. Equilibrium experiments showed that the adsorption process is a single layer, and the maximum adsorption capacity is 285.71 and 178.57 mg of dibenzothiophene per gram of adsorbent modified by iron nanostructure and per gram of adsorbent modified by iron nanostructure and chitosan, respectively. The results of kinetic data showed that the pseudo-second-order kinetic model is consistent with the experimental result. To determine mass transfer parameters, the mathematical model of film-pore-surface diffusion model was used by MATLAB software and it was observed that external mass transfer and pore diffusion stages are more important.

کلیدواژه‌ها [English]

  • Adsorption
  • Walnut Sell-Activated Carbon
  • Isooctane
  • Dibenzothiophene
  • Modeling
[1] R. Fowler, L. Boock, AdVanta FCC catalyst, Grace 2002 Latin American and Caribbean Refining Seminar, 2002.
[2] C. O. Ania ,T. J. Bandosz, "Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene", Langmuir, vol. 21, no. 17, pp. 7752-7759, 2005.
[3] T. J. Bandosz, Activated carbon surfaces in environmental remediation. Elsevier, 2006.
[4] Y. S. Ho, "Review of second-order models for adsorption systems", Journal of hazardous materials, vol. 136, no. 3, pp. 681-689, 2006.
[5] H. Sharififard, M. Soleimani, "Modeling and experimental study of vanadium adsorption by iron-nanoparticle-impregnated activated carbon", Research on Chemical Intermediates, vol. 43, no. 4,
pp. 2501-2516, 2017.
[6] M. Soleimani, T. Kaghazchi, "Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones–An agricultural waste", Bioresource Technology, vol. 99, no. 13, pp. 5374-5383, 2008.
[7] T. Kaghazchi, N. A. Kolur, M. Soleimani, "Licorice residue and Pistachio-nut shell mixture: A promising precursor for activated carbon", Journal of industrial and engineering chemistry, vol. 16, no. 3,  pp. 368-374, 2010.
[8] M. Mariana, H. P. S. Abdul Khalil, E. M. Mistar, E. B. Yahya, T. Alfatah, M. Danish, M. Amayreh, "Recent advances in activated carbon modification techniques for enhanced heavy metaladsorption", Journal of Water Process Engineering, vol. 43, pp. 102221, 2021.
[9] I. O. Saheed, W. D. Oh, F. B. M. Suah, " Chitosan modifications for adsorption of pollutants – A review", Journal of Hazardous Materials, vol. 408, pp. 124889, 2021.
[10] M. Yaseen, S. Ullah, W. Ahmad, S. Subhan, F. Subhan, "Fabrication of Zn and Mn loaded activated carbon derived from corn cobs for the adsorptive desulfurization of model and real fuel oils", Fuel, vol. 284, pp. 119102, 2021.
[11] M. O. Azeez, S. A. Ganiyu, "Review of biomass derived-activated carbon for production of clean fuels by adsorptive desulfurization: Insights into processes, modifications, properties, and performances", Arabian Journal of Chemistry, vol.16, pp. 105182, 2023.
[12] X. D. Fan, X. K. Zhang, "Simultaneous Removal of SO2 and NO with Activated Carbon from Sewage Sludge Modified by Chitosan", Applied Mechanics and Materials, vol. 253-255, pp. 960-964, 2012.
[13] H. Abo-Dief, N. A. Mostafa, E. Alzahrani, A. T. Mohamed, "An innovated method of H2S elimination from KSA crude oil using chitosan/nano activated carbon/iron oxide composite", Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 7, pp. 2999-3007, 2016.
[14] H. Sharififard, Z. Hashemi shahrakim E. Rezvanpanah, S. H. Rad, "A novel natural chitosan/activated carbon/iron bio-nanocomposite: Sonochemical synthesis, characterization, and application for cadmium removal in batch and continuous adsorption process", Bioresource technology, vol. 270, pp. 562-569, 2018.
[15] J. Sahu, J. Acharya, B. Meikap, "Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology", Bioresource technology, vol. 101, no. 6, pp. 1974-1982, 2010.
[16] H. Sharififard, M. Soleimani, F. Z. Ashtiani, "Evaluation of activated carbon and bio-polymer modified activated carbon performance for palladium and platinum removal", Journal of the Taiwan institute of chemical engineers, vol. 43, no. 5, pp. 696-703, 2012.
[17] ASTM Standard, Designation D2866-94, Standard test method for total ash content of activated carbon, 2000.
[18] R. Ocampo-Perez, R. Leyva-Ramos, J. Mendoza-Barron, R. M. Guerrero-Coronado, "Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models", Journal of colloid and interface science, vol. 364, no. 1, pp. 195-204, 2011.
[19] G. McKay, S. J. Allen, I. F. McConvey, M. S. Otterburn, "Transport processes in the sorption of colored ions by peat particles", Journal of Colloid and Interface Science, vol. 80, no. 2, pp. 323-339, 1981.
[20] H. Spahn, E. Schlünder, "The scale-up of activated carbon columns for water purification, based on results from batch tests—I: Theoretical and experimental determination of adsorption rates of single organic solutes in batch tests", Chemical Engineering Science, vol. 30, no. 5-6, pp. 529-537, 1975.
[21] M. Gayathiri, T. Pulingam, K.T. Lee, K. Sudesh, "Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism", Chemosphere, vol. 294, pp. 133764, 2022.
[22] V. Ramya, D. Murugan, C. Lajapathirai, S. Meenatchisundaram, S. Arumugam, "A composite adsorbent of superparamagnetic nanoparticles with sludge biomass derived activated carbon for the removal of chromium (VI)", Journal of Cleaner Production, vol. 366, no. 15, pp. 132853, 2022.
[23] G. P. Mashile, A. Mpupa, A. Nqombolo, K. Mogolodi-Dimpe, P. N. Nomngongo, "Recyclable magnetic waste tyre activated carbon-chitosan composite as an effective adsorbent rapid and simultaneous removal of methylparaben and propylparaben from aqueous solution and wastewater", Journal of Water Process Engineering, vol. 33, pp. 101011, 2020.
[24] L. J. Kennedy, J. J. Vijaya, G. Sekaran, "Effect of two-stage process on the preparation and characterization of porous carbon composite from rice husk by phosphoric acid activation", Industrial & engineering chemistry research, vol. 43, no. 8, pp. 1832-1838, 2004.
[25] A. Alsultan, A. Mijan, Y. H. Taufiq-Yap, "Preparation of activated carbon from walnut shell doped la and Ca catalyst for biodiesel production from waste cooking oil", Materials Science Forum, 2016, vol. 840: Trans Tech Publ, pp. 348-352.
[26] T. Budinova et al., "Characterization and application of activated carbon produced by H3PO4 and water vapor activation", Fuel processing technology, vol. 87, no. 10, pp. 899-905, 2006.
[27] Y. Luo, D. Li, Y. Chen, X. Sun, Q. Cao, X. Liu, "The performance of phosphoric acid in the preparation of activated carbon-containing phosphorus species from rice husk residue", Journal of Materials Science, vol. 54, no. 6, pp. 5008-5021, 2019.
[28] V. K. Konaganti, R. Kota, S. Patil, G. Madras, "Adsorption of anionic dyes on chitosan grafted poly (alkyl methacrylate) s", Chemical engineering journal, vol. 158, no. 3, pp. 393-401, 2010.
[29] A. H. Jawad, A. S. Abdulhameed, M. S. Mastuli, "Mesoporous crosslinked chitosan-activated charcoal composite for the removal of thionine cationic dye: comprehensive adsorption and mechanism study", Journal of Polymers and the Environment, vol. 28, no. 3, pp. 1095-1105, 2020.
[30] A. M. Matloob, D. R. Abd El-Hafiz, L. Saad, S. Mikhail, D. Guirguis, "Metal organic framework-graphene nano-composites for high adsorption removal of DBT as hazard material in liquid fuel", Journal of Hazardous Materials, vol. 373, pp. 447-458, 2019.
[31] C.O. Ania, T.J. Bandosz, "Metal-loaded polystyrene-based activated carbons as dibenzothiophene removal media via reactive adsorption", Carbon, vol. 44, pp. 2404-2412, 2006.
[32] F. Vafaee, S. Mandizadeh, O. Amiri, M. Jahangiri, M. Salavati-Niasari, "Synthesis and characterization of AFe2O4 (A: Ni, Co, Mg)–silica nanocomposites and their application for the removal of dibenzothiophene (DBT) by an adsorption process: kinetics, isotherms and experimental design", RSC Advances, vol. 11, pp. 22661, 2021.
[33] M. Khaled, "Adsorption performance of multiwall carbon nanotubes and graphene oxide for removal of thiophene and dibenzothiophene from model diesel fuel", Research on Chemical Intermediates, vol. 41, pp. 9817-9833, 2015.
[34] A.B. Fadhil, H.N. Saeed, L.I. Saeed, "Polyethylene terephthalate waste-derived activated carbon for adsorptive desulfurization of dibenzothiophene from model gasoline: Kinetics and isotherms evaluation", Asia-Pacific Journal of Chemical Engineering, vol. 16, pp. 2594, 2021.
[35] G. Crini et al, "The removal of Basic Blue 3 from aqueous solutions by chitosan-based adsorbent: Batch studies", Journal of Hazardous Materials, vol. 153, no. 1-2, pp. 96-106, 2008.
[36] M. Al-Ghouti, M. Khraisheh, M. Ahmad, S. Allen, "Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study", Journal of Colloid and Interface Science, vol. 287, no. 1, pp. 6-13, 2005.
[37] P. Ramachandran, R. Vairamuthu, S. Ponnusamy, "Adsorption isotherms, kinetics, thermodynamics and desorption studies of reactive Orange 16 on activated carbon derived from Ananas comosus (L.) carbon", Journal of Engineering and Applied Sciences, vol. 6, no. 11, pp. 15-26, 2011.
[38] J. D. Seader, E. J. Henley, D. K. Roper, Separation process principles. Wiley New York, 1998.
[39] M. Mahalakshmi, S.E. Saranaathan, "Film-pore diffusion modeling for the adsorption of aqueous dye solution onto acid-treated sugarcane bagasse", Desalination and Water Treatment, vol. 168, pp. 324–339, 2019.
[40] V. Ponnusami, K.S. Rajan, S.N. Srivastava, "Application of film-pore diffusion model for methylene blue adsorption onto plant leaf powders", Chemical Engineering Journal, vol. 163, no. 3, pp. 236-242, 2010.
[41] Y. Seida, N. Sonetaka, K. E. Noll, E. Furuya, "Determination of pore and surface diffusivities from single decay curve in CSBR based on parallel diffusion model", Water, vol. 14, no. 22, pp. 3629, 2022.