بررسی تأثیر نانوذرات تیتانیوم دی‌اکسید بر عملکرد غشاهای پلی‌ونیل‌کلراید در جداسازی هیومیک اسید

نوع مقاله : پژوهشی

نویسندگان

1 گروه شیمی، دانشگاه صنعتی خاتم الانبیا بهبهان، بهبهان، ایران

2 گروه مهندسی شیمی، دانشگاه صنعتی خاتم الانبیا بهبهان، بهبهان، ایران

چکیده

با توجه به مشکلات کیفیت آب و قوانین سخت‌گیرانه وضع شده برای تصفیه آب‌های آشامیدنی، نیاز به استفاده از روش‌های مؤثرتر و اقتصادی­تر برای حذف آلاینده­ های آب حس می‌شود. در این بین استفاده از فرایندهای غشایی، یکی از مهم‌ترین روش­ها برای حذف هر چه بهتر آلاینده ­ها محسوب می­شود. بر این اساس در پژوهش حاضر، غشاهای میکرو متخلخل پلی­ وینیل­ کلراید (PVC) حاوی نانوذرات تیتانیوم دی اکسید (TiO2) به روش جدایش فازی با القای ضدحلال جهت کاربرد در جداسازی هیومیک اسید به عنوان مدل آب آلوده ساخته شد. نتایج بدست آمده نشان داد که غشای حاوی 3 درصد وزنی از نانوذرات بیشترین میزان گذردهی آب خالص را با مقدار l/m2h 146/2 دارا می­ باشد. همچنین، تحلیل نتایج حاصل از مقدار پس ­زنی هیومیک اسید نشان داد، غشای دارای 2 درصد وزنی از نانوذرات دارای بیشترین بازده جداسازی با مقدار %80 بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Titanium Dioxide Nanoparticles on the Performance of Polyvinyl Chloride Membranes in the Separation of Humic Acid

نویسندگان [English]

  • Zeynab Askari 1
  • Parya Amirabedi 2
  • Fatemeh Zeraatpisheh 1
1 Department of Chemistry, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
2 Department of Chemical Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
چکیده [English]

Considering the water quality problems and the strict laws established for drinking water treatment, the need to use more effective and economical methods to remove water pollutants is felt. Meanwhile, the use of membrane processes is considered one of the most important methods to remove pollutants as best as possible. Based on this, in the current research, microporous polyvinyl chloride (PVC) membranes containing titanium dioxide (TiO2) nanoparticles were made using the nonsolvent induction phase separation method for use in humic acid separation as a model of polluted water. The obtained results showed that the membrane containing 3 wt% of nanoparticles has the highest pure water permeability with a value of 146.2 l/m2h. Also, the analysis of the results of humic acid rejection showed that the membrane with 2 wt% of nanoparticles with the smallest average radius of the surface pores had the highest separation efficiency with a value of 80%.

کلیدواژه‌ها [English]

  • Polyvinyl Chloride
  • Nonsolvent Induction Phase Separation
  • Titanium Dioxide
  • Water Pollutants
  • Humic Acid Rejection
[1] M.S. Algamdi, I.H. Alsohaimi, J. Lawler, H.M. Ali, et al. "Fabrication of graphene oxide incorporated polyethersulfone hybrid ultrafiltration membranes for humic acid removal", Separation and Purification Technology, Vol. 223, pp. 2-17, 2019.
[2] A.G. Fane, R. Wang, M.X. Hu, "Synthetic membranes for water purification: status and future", Angewandte Chemie International, 54rd ed., pp. 3368-3386, 2015.
[3] F. Senusi. M. Shahadat, S. Ismail, S.A. Hamid, "Recent advancement in membrane technology for water purification", Modern Age Environmental Problems and their Remediation, pp.16-147, 2018.
[4] I. Jahan, L. Zhang,"Natural polymer-based electrospun nanofibrous membranes for wastewater treatment: A review", Journal of Polymers and the Environment, pp. 1-21, 2022.
[5] M.F, Zoubeik, "Membrane Filtration System for Produced Water Treatment", Experimental and Modeling Analyses, The University of Regina (Canada), 2018.
[6] J.A. Howell "Future of membranes and membrane reactors in green technologies and for water reuse", Desalination, Vol.162, pp. 1-11, 2004.
[7] D. Qadir, H. Mukhtar, L.K. Keong, "Mixed matrix membranes for water purification applications", Separation & Purification Reviews, Vol. 46, No.1, pp. 62-80, 2017.
[8] Y. Wen, J. Yuan, X. Ma. S. Wang, Y. Liu, "Polymeric nanocomposite membranes for water treatment: a review", Environmental Chemistry Letters, Vol.17, pp. 1539-1551, 2019.
[9] M. Zahid, A. Rashid, S. Akram, Z.A. Rehan, W. Razzaq, "A comprehensive review on polymeric nano-composite membranes for water treatment",  J. Member. Sci. Technolgy, Vol. 8, No.1, pp. 1-20, 2018.
[10] A. Giwa, M. Ahmed, S.W. Hasan, "Polymers for membrane filtration in water purification", Polymeric Materials for Clean Wate, pp. 167-1902019.
[11] P. Pal, S. Chaurasia, S. Upadhyaya, R. Kumar, S. Sridhar," Development of hydroagen selective microporous PVDF membrane", International Journal of Hydrogen Energy,Vol. 45, No. 34, pp.16965-16975, 2020.
[12] A. Behboudi, Y. Jafarzadeh, R. Yegani, "Polyvinyl chloride/polycarbonate blend ultrafiltration membranes for water treatment", Journal of membrane science, Vol. 534, pp. 18-24, 2017.
[13] A. Behboudi, Y. Jafarzadeh, R. Yegani, "Enhancement of antifouling and antibacterial properties of PVC hollow fiber ultrafiltration membranes using pristine and modified silver nanoparticles", Journal of Environmental Chemical Engineering, Vol. 6, No. 2, pp. 1764-1773, 2018.
[14] D. Ghazanfari, D. Bastani, S. A. Mousavi,"Preparation and characterization of poly (vinyl chloride) (PVC) based membrane for wastewater treatment", Journal of Water Process Engineering, Vol.16, pp. 98-107, 2017.
[15] N. Haghighat, V. Vatanpour, M. Sheydaei, Z. Nikjavan, "Preparation of a novel polyvinyl chloride (PVC) ultrafiltration membrane modified with Ag/TiO2 nanoparticle with enhanced hydrophilicity and antibacterial activities", Separation and Purification Technology, Vol. 237, pp. 116374, 2020.
[16] H. Basri, A. F. Ismail, M. Aziz, " Polyethersulfone (PES)–silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity", Desalination, Vol. 273, pp. 72-80, 2011.
[17] Y. C.  Lin, H.-H. Tseng, D.K. Wang, "Uncovering the effects of PEG porogen molecular weight and concentration on ultrafiltration membrane properties and protein purification performance", Journal of Membrane Science, Vol. 618, pp. 118- 729, 2021.
[18] N. Nasrollahi, L. Ghalamchi, V. Vatanpour,"Novel polymeric additives in the preparation and modification of polymeric membranes: A comprehensive review", Journal of Industrial and Engineering Chemistry, Vol.109, pp. 100-124, 2022.
[19] H. Younas, Z.U.R. Afridi, Y. Zhou, Z. Cui, "Progress and perspective of antifouling, pressure driven, flat-sheet nanocomposite, polymeric membranes in water treatment", Journal of Membrane Science and Research, Vol. 6, No.3, pp. 319-332, 2020.
[20] J. Soni, N. Sahiba, A. Sethiya, "Polyethylene glycol: A promising approach for sustainable organic synthesis", Journal of Molecular Liquids, Vol. 315, pp. 113766, 2020.
[21] W. Zhang, H. Yang, J. Wang, "Effects of inorganic nanoparticle/PEG600 composite additives on properties of chlorinated polyvinyl chloride ultrafiltration membranes", Desalination and Water Treatment, Vol. 142, pp. 114-124, 2019.
[22] V. Vatanpour, S. S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, "Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite", Journal of membrane science, vol. 375, No.1-2, pp. 284-29, 2011.
[23] N. Ahmad, T. Mahmood, "Preparation and properties of 4-aminobenzoic acid-modified polyvinyl chloride/titanium dioxide and PVC/TiO2 based nanocomposites membranes", Polymers and Polymer Composites, pp 30, 2022.
[24] A. Behboudi, Y. Jafarzadeh, R. Yegani, "Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes", Chemical engineering research and design, Vol. 114, pp. 96-107, 2016.
[25] A.T. Kuvarega, N. Khumalo, D. Dlamini, et al, "Polysulfone/N, Pd co-doped TiO2 composite membranes for photo catalytic dye degradation", Separation and Purification Technology, Vol. 191, pp. 122-133, 2018.
[26] R. Rashidi, S. Khakpour, S. Masoumi, et al, "Effects of GO-PEG on the performance and structure of PVC ultrafiltration membranes", Chemical Engineering Research and Design, Vol. 177, pp. 815-825, 2022.
[27] H. C. Man, M. U. Abba, M. Abdulsalam, et al, "Utilization of Nano-TiO2 as an influential additive for Complementing Separation Performance of a Hybrid PVDF-PVP Hollow Fiber: Boron removal from leachate", Polymers, Vol. 12, No. 11, pp. 2511, 2020.
[28] E. Liu, W. Jing, X. Zhang, S. Du. Z. Zeng, et al, "Improved thin-film-composite forward-osmosis membrane for coal mine water purification", Materials Chemistry and Physics, Vol. 283, pp. 126011, 2022.
[29] D. Zou, S. M. Jeon, H. W. Kim, J. Y. Bae, Y. M. Lee, "In-situ grown inorganic layer coated PVDF/PSF composite hollow fiber membranes with enhanced separation performance", Journal of Membrane Science, Vol. 637, pp. 119632, 2021.
[30] Y. Jafarzadeh, R. Yegani, "Analysis of fouling mechanisms in TiO2 embedded high density polyethylene membranes for collagen separation", Chemical Engineering Research and Design, Vol. 93, pp. 684-695, 2015.
[31] P. Amirabedi, A. Akbari, R. Yegani, S. Raveshiyan, "CO2 Stripping from Monoethanolamine through a Polypropylene/CH3SiO2 Composite Hollow‐Fiber Membrane Contactor", Chemical Engineering & Technology, Vol.45, No.8, pp. 512-521, 2022.
[32] J.-F. Li, Z.-L. Xu, H. Yang, L.-Y. Yu, M. Liu, "Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane", Applied Surface Science, Vol. 255, No.9, pp. 4725-4732, 2009.
[33] V. Vatanpour, S. S. Madaeni, A. R. Khataee, et al, "TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance", Desalination, Vol. 292, pp. 19-29, 2012.
[34] Y. Jafarzadeh, R. Yegani, M. Sedaghat, "Preparation, characterization and fouling analysis of ZnO/polyethylene hybrid membranes for collagen separation", Chemical engineering research and design, Vol. 94, pp. 417-427, 2015.
[35] S. Raveshiyan, P. Amirabedi, R. Yegani, B. Pourabbas, "CO2 absorption through PP/fSiO2 nanocomposite hollow fiber membrane contactor", Polyolefins Journal, Vol. 9, No. 1, pp. 61-71, 2022.
[36] D. Bikiaris, "Microstructure and properties of polypropylene/carbon nanotube nanocomposites", Materials, Vol. 3, No.4, pp. 2884-2946, 2010.
[37] T. Chang, L. R. Jensen, A. Kisliuk, R. Pipes, et al." Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite", Polymer, Vol. 46, No.2, pp. 439-44, 2005.
[38] Y. Jafarzadeh, M. Mirzababaei, M. J. Shahbazi, et al, "Preparation, identification and analysis of deposition mechanisms of PVDF membranes embedded with TiO2", Journal of Polymer Science and Technology (Persian), Vol. 29, No.6, pp.558-543, 2017.
 [39] S. Hong, M. Elimelech, "Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes", Journal of membrane science, Vol.132, No.2, pp. 159-181, 1997.
[40] H. Song, J. Shao, J. Wang, X. Zhong,  "The removal of natural organic matter with LiCl–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis", Desalination, Vol. 344, pp. 412-421, 2014.
[41] L.-L, Hwang, H. H.Tseng, J. C. Chen, "Fabrication of poly phenylsulfone/polyetherimide blend membranes for ultrafiltration applications: The effects of blending ratio on membrane properties and humic acid removal performance", Journal of membrane science, Vol. 384, pp. 72-81, 2011.
[42] A. Akbari, R. Yegani, B. Pourabbas, et al., "Fabrication and study of fouling characteristics of HDPE/PEG grafted silica nanoparticles composite membrane for filtration of Humic acid", Chemical Engineering Research and Design, Vol. 109, pp. 282-296, 2016.