بررسی مولکولی اثر ماده فعال سطحی توئین بر روی غشایPEBA در فرایند جداسازی CO2

نوع مقاله : پژوهشی

نویسندگان

استادیار گروه مهندسی شیمی دانشکده فنی و مهندسی، دانشگاه صنعتی خاتم الانبیا بهبهان، بهبهان، ایران

10.22034/farayandno.2024.2022372.1950

چکیده

در این پژوهش غشای پلی اتر بلاک آمید (Poly ether block amid, PEBA) خالص و نیز غشای پلی اتر بلاک آمید حاوی ماده فعال سطحی توئین با استفاده از شبیه‌سازی مولکولی ساخته شده و از دیدگاه مولکولی مورد بررسی قرار گرفت. در این راستا، به‌منظور بررسی ساختار غشاها، چگالی و کسر حجم آزاد آن‌ها محاسبه شد. همچنین تابع توزیع شعاعی به‌منظور بررسی برهمکنش گاز  CO2 با زنجیرهای پلیمری PEBA و مولکول‌های توئین رسم شده و ضرایب نفوذ و حلالیت در مقابل گازهای CO2 و N2 بدست آمد. علاوه بر این، انتخابگری CO2 نسبت به N2 برای غشاها محاسبه گردید. نتایج نشان از افزایش ضرایب حلالیت و نفوذ CO2 و به دنبال آن افزایش عبور دهی این گاز با افزودن توئین به زمینه پلیمری را داشت در حالی که انتخابگری غشای حاوی توئین به دلیل افزایش ضریب نفوذ N2 در این غشا نسبت به غشای خالص کم‌تر شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Molecular investigation of the effect of Tween surfactant on PEBA membrane in CO2 separation process

نویسندگان [English]

  • Mahdi Elyasi Kojabad
  • Parya Amirabedi
Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
چکیده [English]

In this research, pure polyether block amide (PEBA) membrane and PEBA membrane containing tween surfactant were made using molecular simulation and analyzed from a molecular point of view. In order to investigate the structure of the membranes, their density and free fraction volume were calculated. Also, the radial distribution function was plotted in order to investigate the interaction of CO2 gas with PEBA polymer chains and tween molecules, and the permeability and solubility coefficients against CO2 and N2 gases were obtained. Moreover, the selectivity of CO2 over N2 was calculated for the membranes. The results showed an increase in the solubility and diffusion coefficients of CO2, followed by an increase in the permeability of this gas by adding tween to the polymer matrix, while the selectivity of the membrane containing tween decreased due to the increase in the diffusion coefficient of N2 in this membrane compared to the pure membrane.

کلیدواژه‌ها [English]

  • Membrane
  • Polyether Block Amide
  • Surfactant
  • Tween
  • Molecular Simulation
[1]       T. Patil, S. Dharaskar, J. Pandya, S. Shinde, S. Sasi, M. Sillanpaa, C. Yoo, T.C. Sekhara, "Efficient CO2/CH4 separation using [Bmim][Ac]/Pebax-1657 supported ionic liquid membranes and its prediction by density functional theory", International Journal of Greenhouse Gas Control , vol.124, pp. 103856, 2023.
[2]       S. Zare, A. Pouranfard, " Experimental and theoretical study of CO2 absorption by Water-Ionic liquid-Piperazine solution using the method of Constrained Mixture Design", Journal of Farayandno, vol. 17, pp. 39-59, 2023.
[3]       Z. Tabandeh, A. Reisi-vanani, "Manipulation of the CO2 capture capability of graphdiyne using transition metal decoration and charge injection : A DFT-D2 study", Fuel, vol.333, pp.126295, 2023.
[4]       M. Momeni, M.E. Kojabad, S. Khanmohammadi, Z. Farhadi, R. Ghalandarzadeh, A.A. Babaluo, M. Zare, "Impact of support on the fabrication of poly (ether-b-amide) composite membrane and economic evaluation for natural gas sweetening", J. Nat. Gas Sci. Eng., vol.62, pp.236–246, 2019.
[5]       P. Amirabedi, K. pourkhanali, "An Overview of Emission Sources , Separation Methods and Valuable Crops Producible from CO2", Journal of Farayandno, vol.17, pp. 39–59, 2023.
[6]       R. Ebadi, H. Maghsoudi, A.A. Babaluo, "Fabrication and characterization of Pebax-1657 mixed matrix membrane loaded with Si-CHA zeolite for CO2 separation from CH4", J. Nat. Gas Sci. Eng. 90, 103947, 2019.
[7]       G. Energy, Z. Qin, Y. Ma, J. Wei, H. Guo, B. Wang, W. Jiang, L. Yao, L. Yang, Z. Dai, E.D. Eda, "Recent progress in ternary mixed matrix membranes for CO2 separation Cellulose acetate Carbon nanotube", Green Energy & Environment, 2023.
[8]       M.E. Kojabad, M. Momeni, A.A. Babaluo, M.J. Vaezi, "PEBA / PSf Multilayer Composite Membranes for CO2 Separation : Influence of Dip Coating Parameters", Chemical Engineering & Technology, vol.43, pp.1451–1460, 2020.
[9]       M. Elyasi Kojabad, M. Nouri, A.A. Babaluo, A. Tavakoli, R. Sardari, Z. Farhadi, M. Moharrami, "Alumina-PEBA/ PSf Multilayer composite membranes for CO2 separation: experimental and molecular simulation studies", Sci. Iran., vol.30, pp.2043-2055, 2022.
[10] M.E. Kojabad, A.A. Babaluo, A. Tavakoli, R.L.M. Sofla, H.G. Kahnamouei, "Comparison of acidic and basic ionic liquids effects on dispersion of alumina particles in Pebax composite membranes for CO2/N2 separation: Experimental study and molecular simulation", J. Environ. Chem. Eng., vol.9, pp.106116, 2021.
[11] M.E. Kojabad, A. Babaluo, A. Tavakoli, "A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (ether-block-amide) for CO2/N2 separation: Molecular simulation and experimental study", Sep. Purif. Technol., vol.266, pp.118494, 2021.
[12] M.E. Kojabad, A.A. Babaluo, A. Tavakoli, H.G. Kahnamouei, "A novel high-performance facilitated transport membrane by simultaneously using semi-mobile and fixed carriers for CO2/N2 separation", Process Saf. Environ. Prot., vol.156, pp.304–314, 2021.
[13] P. Bernardo, G. Clarizia, "Enhancing Gas Permeation Properties of Pebax® 1657 Membranes via Polysorbate Nonionic Surfactants Doping", Polym., vol. 12, 2020.
[14] M.J. Rosen, J.T. Kunjappu, "Surfactants and Interfacial Phenomena", Fourth Edition, 2012.
[15] X. kun Ma, N.H. Lee, H.J. Oh, J.W. Kim, C.K. Rhee, K.S. Park, S.J. Kim, "Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant", Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 358, pp.172–176, 2010.
[16] Y. Li, X. Li, H. Wu, Q. Xin, S. Wang, Y. Liu, Z. Tian, T. Zhou, Z. Jiang, H. Tian, X. Cao, B. Wang, "Anionic surfactant-doped Pebax membrane with optimal free volume characteristics for efficient CO2 separation", J. Memb. Sci., vol.493,  pp.460–469, 2015.
[17] C. Simari, I. Nicotera, I.D. Perrotta, G. Clarizia, P. Bernardo, "Microscopic and macroscopic investigation on the gas diffusion in poly(ether-block-amide) membranes doped with polysorbate nonionic surfactants", Polymer , vol. 209, pp.122949, 2020.
[18] L.L. Dong, C.F. Zhang, Y.Y. Zhang, Y.X. Bai, J. Gu, Y.P. Sun, M.Q. Chen, "Improving CO2/N2 separation performance using nonionic surfactant Tween containing polymeric gel membranes", RSC Adv., vol.5, pp.4947–4957, 2015.
[19] D. Polak, J. Sułkowska, M. Szwast, "The influence of surfactant Pluronic P123 addition on the mixed matrix membrane PEBAX 2533 – ZIF-8 separation properties", Desalination Water Trea, vol.214,  pp.64–73, 2021.
[20] W. Tang, H. Lou, Y. Li, X. Kong, Y. Wu, X. Gu, "Ionic liquid modified graphene oxide-PEBA mixed matrix membrane for pervaporation of butanol aqueous solutions", J. Memb. Sci. 581, pp. 93–104, 2019.
[21] C. Hoon, E. Tocci, E. Fontananova, M.A. Bahattab, S.A. Aljlil, E. Drioli, "Mixed matrix membranes containing functionalized multiwalled carbon nanotubes : Mesoscale simulation and experimental approach for optimizing dispersion", J. Memb. Sci. 514, pp. 195–209, 2016.
[22] Y. Liu, C. Chen, G. Lin, C. Chen, K.C. Wu, C. Lin, K. Tung, "Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement", J. Memb. Sci., 582, pp. 358–366, 2019.
[23] M. Asghari, M. Mosadegh, H. Riasat Harami, "Supported PEBA-zeolite 13X nano-composite membranes for gas separation: Preparation, characterization and molecular dynamics simulation", Chem. Eng. Sci., vol.187, pp. 67–78, 2018.
[24] K. Golzar, H. Modarress, S. Amjad-iranagh, "Separation of gases by using pristine, composite and nanocomposite polymeric membranes : A molecular dynamics simulation study, Journal of Membrane Science, vol.539, pp. 238–256, 2017.
[25] H. Khanmohammadi, B. Bayati, J. Rahbar Shahrouzi, A.A. Babaluo, A. Ghorbani, "Molecular simulation of the ion exchange behavior of Cu2+, Cd2+ and Pb2+ ions on different zeolites exchanged with sodium, J. Environ. Chem. Eng., vol. 7, pp. 103040, 2019.
[26] M. Pazirofteh, M. Abdolmajidi, M. Samipoorgiri, M. Dehghani, A.H. Mohammadi, "Separation and transport specification of a novel PEBA-1074/PEG-400/TiO2 nanocomposite membrane for light gas separation: Molecular simulation study", J. Mol. Liq., vol.291, pp. 111268, 2019.
[27] K. Golzar, S. Amjad-iranagh, M. Amani, H. Modarress, Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes, Journal of Membrane Science, vol.451, pp. 117–134, 2014.
[28] M. Dehghani, M. Asghari, A. Fauzi, A.H. Mohammadi, "Molecular dynamics and Monte Carlo simulation of the structural properties , diffusion and adsorption of poly (amide-6-b-ethylene oxide)/ Faujasite mixed matrix membranes", Journal of Molecular Liquids, vol.242, pp. 404–415, 2017.
[29] C. Ling, X. Liang, F. Fan, Z. Yang, "Diffusion behavior of the model diesel components in different polymer membranes by molecular dynamic simulation",Chemical Engineering Science, vol.84, pp. 292–302, 2012.
[30] M. Pazirofteh, M. Dehghani, S. Niazi, A.H. Mohammadi, M. Asghari, "Molecular dynamics simulation and Monte Carlo study of transport and structural properties of PEBA 1657 and 2533 membranes modified by functionalized POSS-PEG material", Journal of Molecular Liquids, vol. 241, pp. 646–653, 2017.
[31] B. Kruczek, M. Al-Lsmaily, J.G. Wijmans, "A shortcut method for faster determination of permeability coefficient from time lag Experiments", Procedia Eng., vol.44,  pp. 1396–1398, 2012.
[32] H. Lin, Z. He, Z. Sun, J. Vu, A. Ng, M. Mohammed, J. Kniep, T.C. Merkel, T. Wu, R.C. Lambrecht, "CO2-selective membranes for hydrogen production and CO2capture - Part I: Membrane development", J. Memb. Sci., vol.457,  pp. 149–161, 2014.
[33] L. Wang, Y. Li, S. Li, P. Ji, C. Jiang, "Preparation of composite poly(ether block amide) membrane for CO2 capture", J. Energy Chem. 23, pp. 717–725, 2014.